408 research outputs found

    New Electromagnetic Sensors for Detection of Subsurface Cracking and Corrosion

    Get PDF
    There have been many improvements in electromagnetic NDE for aging aircraft in the last few years. These improvements include rapid eddy-current scanners [1], magneto-optic imaging [2], pulsed eddy-current methods [3], self-nulling probes [4] and superconductive quantum interference devices (SQUIDs) [5]

    New Capacitive-Array Sensors for Post-Process Cure Verification and NDE of Polymers and Composites

    Get PDF
    A new capacitive array sensor has been developed for process verification and NDE of polymers and composites. Unlike existing dielectrometer technology, the new sensor incorporates several innovations to maximize sensitivity to material properties while minimizing the effects of temperature, humidity and electromagnetic interference. Conventional dielectric measurement systems require sensors to be embedded within a material and discarded after a single use. Furthermore, conventional sensors are so sensitive to environmental variables that cure monitoring is based solely on changes in the material ionic conductivity; no absolute measure of cure state is possible. The configuration of these new sensors greatly reduces sensitivity to environmental variables and permits external, rather than embedded, measurement making both post-process cure verification and NDE possible. Since the sensor is not discarded, the cost per measurement is greatly reduced

    Elaborated Modeling of Synchrotron Motion in Vlasov-Fokker-Planck Solvers

    Get PDF
    Solving the Vlasov-Fokker-Planck equation is a well-tested approach to simulate dynamics of electron bunches self-interacting with their own wake-field. Typical implementations model the dynamics of a charge density in a damped harmonic oscillator, with a small perturbation due to collective effects. This description imposes some limits to the applicability: Because after a certain simulation time coherent synchrotron motion will be damped down, effectively only the incoherent motion is described. Furthermore – even though computed - the tune spread is typically masked by the use of a charge density instead of individual particles. As a consequence, some effects are not reproduced. In this contribution, we present methods that allow to consider single-particle motion, coherent synchrotron oscillations, non-linearities of the accelerating voltage, higher orders of the momentum compaction factor, as well as modulations of the accelerating voltage. We also provide exemplary studies – based on the KIT storage ring KARA (KArlsruhe Research Accelerator) - to show the potentiality of the methods

    Alpha-buckets in High Energy Electron Storage Rings (Review of Existing Experiments and Feasibility Studies for Future Developments) Review

    Get PDF
    Electron storage rings operating at high energies have proven to be invaluable source of synchrotron radiation. Two and even three simultaneous beams of particles have been observed at different light source facilities worldwide. So called alpha-buckets were studied at Metrological Light Source (MLS) in Berlin (Germany), SOLEIL facility in France, DIAMOND light source in UK, NSLS ring in Brookhaven (USA). It is widely recognized that alpha buckets are general phenomena which is not restricted to a certain storage ring. However, earlier measurements showed essential limitations on parameters of alpha-buckets, strong dependence on high order (sextupole and octupoles) magnetic field imperfections and associated fast decay of electron current as well as reduced life time. Also a rising relevance of high order non-linear longitudinal beam dynamics is associated with new generation of diffraction limited light sources (DLSR) approaches, which all suffer nonlinear momentum compaction factor. A large variety of future generation electron synchrotrons require a comprehensive investigation of the physical processes involved into the operation of such rings. In this paper, we present review of high order non-linear longitudinal beam dynamics based on the longitudinal equations of motion and Hamiltonian expanded to a high order of the momentum compaction factor. Roots of the third order equation with a free term are derived in a form suitable for analytical estimations. The momentum independent term of orbit lengthening due to particle transverse excursions is estimated and taken into account. The results from simulations were benchmarked against existing experiments at the Karlsruhe Research Accelerator (KARA), SOLEIL and MLS rings. Parameters of three simultaneous beams and alpha buckets at MLS and SOLEIL have been reproduced with high accuracy. General conditions for stable operation of alpha buckets are presented. Based on analytical formulas and computer simulations, studies of longitudinal motion at KARA have been performed with an objective to estimate feasibility of filling and storing of beam in α-buckets. A Computer model was used to describe the behavior and dynamics of simultaneous beams in the KARA storage ring

    Status of Negative Momentum Compaction Operation at KARA

    Get PDF
    For future synchrotron light sources different operation modes are of interest. Therefore various modes are currently being tested at the Karlsruhe Research Accelerator (KARA) including optics for a negative momentum compaction factor. These optics have been calculated and are under commissioning at KARA. Additionally, studies about expected collective effects in this regime are being performed, including the head-tail and microbunching instabilities. In this contribution we will present the status of operation in the negative momentum compaction regime and discuss expected collective effects that will be studied in this context

    In Vitro Analysis of the Role of Replication Protein A (RPA) and RPA Phosphorylation in ATR-mediated Checkpoint Signaling

    Get PDF
    Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair
    • …
    corecore