57 research outputs found

    Competing C-4 and C-5-Acyl Stabilization of Uronic Acid Glycosyl Cations.

    Get PDF
    Uronic acids are carbohydrates carrying a terminal carboxylic acid and have a unique reactivity in stereoselective glycosylation reactions. Herein, the competing intramolecular stabilization of uronic acid cations by the C-5 carboxylic acid or the C-4 acetyl group was studied with infrared ion spectroscopy (IRIS). IRIS reveals that a mixture of bridged ions is formed, in which the mixture is driven towards the C-1,C-5 dioxolanium ion when the C-5,C-2-relationship is cis, and towards the formation of the C-1,C-4 dioxepanium ion when this relation is trans. Isomer-population analysis and interconversion barrier computations show that the two bridged structures are not in dynamic equilibrium and that their ratio parallels the density functional theory computed stability of the structures. These studies reveal how the intrinsic interplay of the different functional groups influences the formation of the different regioisomeric products.Bio-organic Synthesi

    Stabilization of glucosyl dioxolenium Ions by "dual participation" of the 2,2-dimethyl-2-(ortho-nitrophenyl)acetyl (DMNPA) protection group for 1,2-cis-glucosylation

    Get PDF
    The stereoselective introduction of glycosidic bonds is of paramount importance to oligosaccharide synthesis. Among the various chemical strategies to steer stereoselectivity, participation by either neighboring or distal acyl groups is used particularly often. Recently, the use of the 2,2-dimethyl-2-(ortho-nitrophenyl)acetyl (DMNPA) protection group was shown to offer enhanced stereoselective steering compared to other acyl groups. Here, we investigate the origin of the stereoselectivity induced by the DMNPA group through systematic glycosylation reactions and infrared ion spectroscopy (IRIS) combined with techniques such as isotopic labeling of the anomeric center and isomer population analysis. Our study indicates that the origin of the DMNPA stereoselectivity does not lie in the direct participation of the nitro moiety but in the formation of a dioxolenium ion that is strongly stabilized by the nitro group.NWONWO-VICI grant VI.C.182.020Bio-organic Synthesi

    Characterization of glycosyl dioxolenium ions and their role in glycosylation reactions

    Get PDF
    Controlling the chemical glycosylation reaction remains the major challenge in the synthesis of oligosaccharides. Though 1,2-trans glycosidic linkages can be installed using neighboring group participation, the construction of 1,2-cis linkages is difficult and has no general solution. Long-range participation (LRP) by distal acyl groups may steer the stereoselectivity, but contradictory results have been reported on the role and strength of this stereoelectronic effect. It has been exceedingly difficult to study the bridging dioxolenium ion intermediates because of their high reactivity and fleeting nature. Here we report an integrated approach, using infrared ion spectroscopy, DFT computations, and a systematic series of glycosylation reactions to probe these ions in detail. Our study reveals how distal acyl groups can play a decisive role in shaping the stereochemical outcome of a glycosylation reaction, and opens new avenues to exploit these species in the assembly of oligosaccharides and glycoconjugates to fuel biological research.Bio-organic Synthesi

    Advances in Stereoselective 1,2-cis Glycosylation using C-2 Auxiliaries

    No full text
    Contains fulltext : 181162.pdf (Publisher’s version ) (Open Access)17 p

    Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs

    Get PDF
    Contains fulltext : 207220.pdf (publisher's version ) (Closed access) Contains fulltext : 207220po.pdf (postprint version ) (Open Access)Sialic acids cap the glycans of cell surface glycoproteins and glycolipids. They are involved in a multitude of biological processes and aberrant sialic acid expression is associated with several pathologies. Sialic acids modulate the characteristics and functions of glycoproteins and regulate cell-cell as well as cell-extracellular matrix interactions. Pathogens such as influenza virus use sialic acids to infect host cells and cancer cells exploit sialic acids to escape from the host's immune system. The introduction of unnatural sialic acids with different functionalities into surface glycans enables the study of the broad biological functions of these sugars and presents a therapeutic option to intervene with pathological processes involving sialic acids. Multiple chemically modified sialic acid analogs can be directly utilized by cells for sialoglycan synthesis. Alternatively, analogs of the natural sialic acid precursor sugar N-Acetylmannosamine (ManNAc) can be introduced into the sialic acid biosynthesis pathway resulting in the intracellular conversion into the corresponding sialic acid analog. Both, ManNAc and sialic acid analogs, have been employed successfully for a large variety of glycoengineering applications such as glycan imaging, targeting toxins to tumor cells, inhibiting pathogen binding, or altering immune cell activity. However, there are significant differences between ManNAc and sialic acid analogs with respect to their chemical modification potential and cellular metabolism that should be considered in sialic acid glycoengineering experiments

    Chemical tools to track and perturb the expression of sialic acid and fucose monosaccharides

    No full text
    • …
    corecore