2,048 research outputs found

    The spin contribution to the form factor of quantum graphs

    Full text link
    Following the quantisation of a graph with the Dirac operator (spin-1/2) we explain how additional weights in the spectral form factor K(\tau) due to spin propagation around orbits produce higher order terms in the small-\tau asymptotics in agreement with symplectic random matrix ensembles. We determine conditions on the group of spin rotations sufficient to generate CSE statistics.Comment: 9 page

    Magnetic focusing of charge carriers from spin-split bands: Semiclassics of a Zitterbewegung effect

    Full text link
    We present a theoretical study of the interplay between cyclotron motion and spin splitting of charge carriers in solids. While many of our results apply more generally, we focus especially on discussing the Rashba model describing electrons in the conduction band of asymmetric semiconductor heterostructures. Appropriate semiclassical limits are distinguished that describe various situations of experimental interest. Our analytical fomulae, which take full account of Zeeman splitting, are used to analyse recent magnetic-focusing data. Surprisingly, it turns out that the Rashba effect can dominate the splitting of cyclotron orbits even when the Rashba and Zeeman spin-splitting energies are of the same order. We also find that the origin of spin-dependent cyclotron motion can be traced back to Zitterbewegung-like oscillatory dynamics of charge carriers from spin-split bands. The relation between the two phenomena is discussed, and we estimate the effect of Zitterbewegung-related corrections to the charge carriers' canonical position.Comment: 14 pages, 2 figures, IOP style, v2: minor changes, to appear in NJP Focus Issue on Spintronic

    Generic identifiability and second-order sufficiency in tame convex optimization

    Full text link
    We consider linear optimization over a fixed compact convex feasible region that is semi-algebraic (or, more generally, "tame"). Generically, we prove that the optimal solution is unique and lies on a unique manifold, around which the feasible region is "partly smooth", ensuring finite identification of the manifold by many optimization algorithms. Furthermore, second-order optimality conditions hold, guaranteeing smooth behavior of the optimal solution under small perturbations to the objective

    Note written by J. Bolte

    Get PDF
    Note concerning repairs on the poultry house at Utah Agricultural College

    Clarke subgradients of stratifiable functions

    Full text link
    We establish the following result: if the graph of a (nonsmooth) real-extended-valued function f:RnR{+}f:\mathbb{R}^{n}\to \mathbb{R}\cup\{+\infty\} is closed and admits a Whitney stratification, then the norm of the gradient of ff at xdomfx\in{dom}f relative to the stratum containing xx bounds from below all norms of Clarke subgradients of ff at xx. As a consequence, we obtain some Morse-Sard type theorems as well as a nonsmooth Kurdyka-\L ojasiewicz inequality for functions definable in an arbitrary o-minimal structure

    Trace formulae for three-dimensional hyperbolic lattices and application to a strongly chaotic tetrahedral billiard

    Full text link
    This paper is devoted to the quantum chaology of three-dimensional systems. A trace formula is derived for compact polyhedral billiards which tessellate the three-dimensional hyperbolic space of constant negative curvature. The exact trace formula is compared with Gutzwiller's semiclassical periodic-orbit theory in three dimensions, and applied to a tetrahedral billiard being strongly chaotic. Geometric properties as well as the conjugacy classes of the defining group are discussed. The length spectrum and the quantal level spectrum are numerically computed allowing the evaluation of the trace formula as is demonstrated in the case of the spectral staircase N(E), which in turn is successfully applied in a quantization condition.Comment: 32 pages, compressed with gzip / uuencod

    Spectral Statistics for the Dirac Operator on Graphs

    Full text link
    We determine conditions for the quantisation of graphs using the Dirac operator for both two and four component spinors. According to the Bohigas-Giannoni-Schmit conjecture for such systems with time-reversal symmetry the energy level statistics are expected, in the semiclassical limit, to correspond to those of random matrices from the Gaussian symplectic ensemble. This is confirmed by numerical investigation. The scattering matrix used to formulate the quantisation condition is found to be independent of the type of spinor. We derive an exact trace formula for the spectrum and use this to investigate the form factor in the diagonal approximation

    Semiclassical Approach to Parametric Spectral Correlation with Spin 1/2

    Full text link
    The spectral correlation of a chaotic system with spin 1/2 is universally described by the GSE (Gaussian Symplectic Ensemble) of random matrices in the semiclassical limit. In semiclassical theory, the spectral form factor is expressed in terms of the periodic orbits and the spin state is simulated by the uniform distribution on a sphere. In this paper, instead of the uniform distribution, we introduce Brownian motion on a sphere to yield the parametric motion of the energy levels. As a result, the small time expansion of the form factor is obtained and found to be in agreement with the prediction of parametric random matrices in the transition within the GSE universality class. Moreover, by starting the Brownian motion from a point distribution on the sphere, we gradually increase the effect of the spin and calculate the form factor describing the transition from the GOE (Gaussian Orthogonal Ensemble) class to the GSE class.Comment: 25 pages, 2 figure

    Letter from J. Willard Bolte

    Get PDF
    Letter concerning an outline for a special poultry course to be taught at Utah Agricultural College

    From error bounds to the complexity of first-order descent methods for convex functions

    Get PDF
    This paper shows that error bounds can be used as effective tools for deriving complexity results for first-order descent methods in convex minimization. In a first stage, this objective led us to revisit the interplay between error bounds and the Kurdyka-\L ojasiewicz (KL) inequality. One can show the equivalence between the two concepts for convex functions having a moderately flat profile near the set of minimizers (as those of functions with H\"olderian growth). A counterexample shows that the equivalence is no longer true for extremely flat functions. This fact reveals the relevance of an approach based on KL inequality. In a second stage, we show how KL inequalities can in turn be employed to compute new complexity bounds for a wealth of descent methods for convex problems. Our approach is completely original and makes use of a one-dimensional worst-case proximal sequence in the spirit of the famous majorant method of Kantorovich. Our result applies to a very simple abstract scheme that covers a wide class of descent methods. As a byproduct of our study, we also provide new results for the globalization of KL inequalities in the convex framework. Our main results inaugurate a simple methodology: derive an error bound, compute the desingularizing function whenever possible, identify essential constants in the descent method and finally compute the complexity using the one-dimensional worst case proximal sequence. Our method is illustrated through projection methods for feasibility problems, and through the famous iterative shrinkage thresholding algorithm (ISTA), for which we show that the complexity bound is of the form O(qk)O(q^{k}) where the constituents of the bound only depend on error bound constants obtained for an arbitrary least squares objective with 1\ell^1 regularization
    corecore