652 research outputs found

    Study of time lags in HETE-2 Gamma-Ray Bursts with redshift: search for astrophysical effects and Quantum Gravity signature

    Full text link
    The study of time lags between spikes in Gamma-Ray Bursts light curves in different energy bands as a function of redshift may lead to the detection of effects due to Quantum Gravity. We present an analysis of 15 Gamma-Ray Bursts with measured redshift, detected by the HETE-2 mission between 2001 and 2006 in order to measure time lags related to astrophysical effects and search for Quantum Gravity signature in the framework of an extra-dimension string model. The use of photon-tagged data allows us to consider various energy ranges. Systematic effects due to selection and cuts are evaluated. No significant Quantum Gravity effect is detected from the study of the maxima of the light curves and a lower limit at 95% Confidence Level on the Quantum Gravity scale parameter of 3.2x10**15 GeV is set.Comment: 4 pages, 5 figures. v3: Error corrected in Eq. 1. Results updated. Proceedings of the 30th ICRC, Merida, Mexico (2007

    Constraints on Lorentz Invariance Violation from Fermi-Large Area Telescope Observations of Gamma-Ray Bursts

    Get PDF
    We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the "QG energy scale" (the energy scale that LIV-inducing QG effects become important, E_QG) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB090510 and are E_{QG,1}>7.6 times the Planck energy (E_Pl) and E_{QG,2}>1.3 x 10^11 GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of ~2. Our results disfavor any class of models requiring E_{QG,1} \lesssim E_Pl.Comment: Accepted for publication by Physical Review

    Reconnaissance of the TRAPPIST-1 exoplanet system in the Lyman-α\alpha line

    Full text link
    The TRAPPIST-1 system offers the opportunity to characterize terrestrial, potentially habitable planets orbiting a nearby ultracool dwarf star. We performed a four-orbit reconnaissance with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope to study the stellar emission at Lyman-α\alpha, to assess the presence of hydrogen exospheres around the two inner planets, and to determine their UV irradiation. We detect the Lyman-α\alpha line of TRAPPIST-1, making it the coldest exoplanet host star for which this line has been measured. We reconstruct the intrinsic line profile, showing that it lacks broad wings and is much fainter than expected from the stellar X-ray emission. TRAPPIST-1 has a similar X-ray emission as Proxima Cen but a much lower Ly-α\alpha emission. This suggests that TRAPPIST-1 chromosphere is only moderately active compared to its transition region and corona. We estimated the atmospheric mass loss rates for all planets, and found that despite a moderate extreme UV emission the total XUV irradiation could be strong enough to strip the atmospheres of the inner planets in a few billions years. We detect marginal flux decreases at the times of TRAPPIST-1b and c transits, which might originate from stellar activity, but could also hint at the presence of extended hydrogen exospheres. Understanding the origin of these Lyman-α\alpha variations will be crucial in assessing the atmospheric stability and potential habitability of the TRAPPIST-1 planets.Comment: Published in A&A as a Letter to the Edito

    Lorentz Symmetry breaking studies with photons from astrophysical observations

    Full text link
    Lorentz Invariance Violation (LIV) may be a good observational window on Quantum Gravity physics. Within last few years, all major Gamma-ray experiments have published results from the search for LIV with variable astrophysical sources: gamma-ray bursts with detectors on-board satellites and Active Galactic Nuclei with ground-based experiments. In this paper, the recent time-of-flight studies with unpolarized photons published from the space and ground based observations are reviewed. Various methods used in the time delay searches are described, and their performance discussed. Since no significant time-lag value was found within experimental precision of the measurements, the present results consist of 95% confidence cevel limits on the Quantum Gravity scale on the linear and quadratic terms in the standard photon dispersion relations.Comment: 22 pages, 9 figures. V2 match the published version. Invited review talk to the 2nd International Colloquium "Scientific and Fundamental Aspects of the Galileo Programme", 14-16 october 2009, Padua, Ital

    In-situ surface technique analyses and ex-situ characterization of Si1-xGex epilayers grown on Si(001)-2 ×1 by molecular beam epitaxy

    No full text
    Si1-xGex epilayers grown by Molecular Beam Epitaxy on Si(001) at 400 ○C have been analyzed in-situ by surface techniques such as X-ray and Ultraviolet Photoelectron Spectroscopies (XPS and UPS), Low Energy Electron Diffraction (LEED) and photoelectron diffraction (XPD). The Ge surface concentrations (x) obtained from the ratios of Ge and Si core level intensities are systematically higher than those obtained by the respective evaporation fluxes. This indicates a Ge enrichment in the first overlayers confirmed by Ge-like UPS valence band spectra. The structured crystallographic character of the epilayers is ascertained by LEED and XPD polar scans in the (100) plane since the Ge Auger LMM and the Si 2p XPD intensity patterns from the Si1-xGex epilayers are identical to those of the Si substrate. The residual stress in the epilayer is determined by ex-situ X-ray diffraction (XRD) which also allows, as Rutherford Back Scattering (RBS), Ge concentration determinations

    Effect of the stellar spin history on the tidal evolution of close-in planets

    Get PDF
    We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits, via star-planet tidal interactions. To do this, we used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and 0.1 M\odot M-dwarfs. We tested two stellar spin evolution profiles, one with fast initial rotation (P=1.2 day) and one with slow initial rotation (P=8 day). We tested the effect of varying the stellar and planetary dissipation and the planet's mass and initial orbital radius. Conclusions: Tidal evolution allows to differentiate the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In light of this study, we can say that differentiating between one spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin profiles. Though some conclusions can still be drawn from statistical distributions of planets around fully convective M-dwarfs. However, if the tidal evolution brings about a merger late in its history it can also entail a noticeable acceleration of the star in late ages, so that it is possible to have old stars that spin rapidly. This raises the question of better constraining the age of stars
    corecore