77 research outputs found

    A complex hepatitis B virus (X/C) recombinant is common in Long An county, Guangxi and may have originated in southern China

    Get PDF
    Recently, a complex (X/C) hepatitis B virus (HBV) recombinant, first reported in 2000, was proposed as a new genotype; although this was refuted immediately because the strains differ by less than 8 % in nucleotide distance from genotype C. Over 13.5 % (38/281) of HBV isolates from the Long An cohort in China were not assigned to a specific genotype, using current genotyping tools to analyse surface ORF sequences, and these have about 98 % similarity to the X/C recombinants. To determine whether this close identity extends to the full-length sequences and to investigate the evolutionary history of the Long An X/C recombinants, 17 complete genome sequences were determined. They are highly similar (96–99 %) to the Vietnamese strains and, although some reach or exceed 8 % nucleotide sequence difference from all known genotypes, they cluster together in the same clade, separating in a phylogenetic tree from the genotype C branch. Analysis of recombination reveals that all but one of the Long An isolates resembles the Vietnamese isolates in that they result from apparent recombination between genotype C and a parent of unknown genotype (X), which shows similarity in part to genotype G. The exception, isolate QL523, has a greater proportion of genotype C parent. Phylogeographic analysis reveals that these recombinants probably arose in southern China and spread later to Vietnam and Laos

    ‘Preparing Ourselves to Become an International Organization’: Thailand Tobacco Monopoly’s Regional and Global Strategies

    Get PDF
    The Thailand Tobacco Monopoly (TTM) controlled the country\u27s tobacco industry from its formation in the 1940s, until the government dropped restrictions on imported cigarettes in the late 1980s in response to pressure from the United States. The TTM has since competed with transnational tobacco companies (TTCs) in a semi-monopoly market in which TTCs have steadily increased their market share. Coupled with a decline in national smoking prevalence, the result of Thailand\u27s stringent tobacco control agenda, the TTM now accounts for a diminishing share of a contracting market. In response, the monopoly has looked to regional trade liberalisation, and proximity to markets with some of the world\u27s highest smoking rates to expand its operations. Expansion strategies have gone largely unrealised however, and the TTM effectively remains a domestic operation. Using TTM publications, market and trade reports, industry publications, tobacco industry documents and other resources, this paper analyses TTM expansion strategies, and the limited extent to which they have been achieved. This inability to expand its operations has left the monopoly potentially vulnerable to global strategies of its transnational competitors. This article is part of the special issue \u27The Emergence of Asian Tobacco Companies: Implications for Global Health Governance\u27

    Evaluation of Intra-Host Variants of the Entire Hepatitis B Virus Genome

    Get PDF
    Genetic analysis of hepatitis B virus (HBV) frequently involves study of intra-host variants, identification of which is commonly achieved using short regions of the HBV genome. However, the use of short sequences significantly limits evaluation of genetic relatedness among HBV strains. Although analysis of HBV complete genomes using genetic cloning has been developed, its application is highly labor intensive and practiced only infrequently. We describe here a novel approach to whole genome (WG) HBV quasispecies analysis based on end-point, limiting-dilution real-time PCR (EPLD-PCR) for amplification of single HBV genome variants, and their subsequent sequencing. EPLD-PCR was used to analyze WG quasispecies from serum samples of patients (n = 38) infected with HBV genotypes A, B, C, D, E and G. Phylogenetic analysis of the EPLD-isolated HBV-WG quasispecies showed the presence of mixed genotypes, recombinant variants and sub-populations of the virus. A critical observation was that HBV-WG consensus sequences obtained by direct sequencing of PCR fragments without EPLD are genetically close, but not always identical to the major HBV variants in the intra-host population, thus indicating that consensus sequences should be judiciously used in genetic analysis. Sequence-based studies of HBV WG quasispecies should afford a more accurate assessment of HBV evolution in various clinical and epidemiological settings

    High and Low Molecular Weight Hyaluronic Acid Differentially Regulate Human Fibrocyte Differentiation

    Get PDF
    Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×10(6) Da). During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8-8×10(5) Da).In this report, we show that HMWHA potentiates the differentiation of human monocytes into fibrocytes, while LMWHA inhibits fibrocyte differentiation. Digestion of HMWHA with hyaluronidase produces small hyaluronic acid fragments, and these fragments inhibit fibrocyte differentiation. Monocytes internalize HMWHA and LMWHA equally well, suggesting that the opposing effects on fibrocyte differentiation are not due to differential internalization of HMWHA or LMWHA. Adding HMWHA to PBMC does not appear to affect the levels of the hyaluronic acid receptor CD44, whereas adding LMWHA decreases CD44 levels. The addition of anti-CD44 antibodies potentiates fibrocyte differentiation, suggesting that CD44 mediates at least some of the effect of hyaluronic acid on fibrocyte differentiation. The fibrocyte differentiation-inhibiting factor serum amyloid P (SAP) inhibits HMWHA-induced fibrocyte differentiation and potentiates LMWHA-induced inhibition. Conversely, LMWHA inhibits the ability of HMWHA, interleukin-4 (IL-4), or interleukin-13 (IL-13) to promote fibrocyte differentiation.We hypothesize that hyaluronic acid signals at least in part through CD44 to regulate fibrocyte differentiation, with a dominance hierarchy of SAP>LMWHA≥HMWHA>IL-4 or IL-13

    Depletion of Murine Intestinal Microbiota: Effects on Gut Mucosa and Epithelial Gene Expression

    Get PDF
    Background Inappropriate cross talk between mammals and their gut microbiota may trigger intestinal inflammation and drive extra-intestinal immune-mediated diseases. Epithelial cells constitute the interface between gut microbiota and host tissue, and may regulate host responses to commensal enteric bacteria. Gnotobiotic animals represent a powerful approach to study bacterial-host interaction but are not readily accessible to the wide scientific community. We aimed at refining a protocol that in a robust manner would deplete the cultivable intestinal microbiota of conventionally raised mice and that would prove to have significant biologic validity. Methodology/Principal Findings Previously published protocols for depleting mice of their intestinal microbiota by administering broad-spectrum antibiotics in drinking water were difficult to reproduce. We show that twice daily delivery of antibiotics by gavage depleted mice of their cultivable fecal microbiota and reduced the fecal bacterial DNA load by 400 fold while ensuring the animals' health. Mice subjected to the protocol for 17 days displayed enlarged ceca, reduced Peyer's patches and small spleens. Antibiotic treatment significantly reduced the expression of antimicrobial factors to a level similar to that of germ-free mice and altered the expression of 517 genes in total in the colonic epithelium. Genes involved in cell cycle were significantly altered concomitant with reduced epithelial proliferative activity in situ assessed by Ki-67 expression, suggesting that commensal microbiota drives cellular proliferation in colonic epithelium. Conclusion We present a robust protocol for depleting conventionally raised mice of their cultivatable intestinal microbiota with antibiotics by gavage and show that the biological effect of this depletion phenocopies physiological characteristics of germ-free mice

    Diabetes in Danish Bank Voles (M. glareolus): Survivorship, Influence on Weight, and Evaluation of Polydipsia as a Screening Tool for Hyperglycaemia

    Get PDF
    BACKGROUND: Previous studies have concluded that the development of polydipsia (PD, a daily water intake ≥ 21 ml) among captive Danish bank voles, is associated with the development of a type 1 diabetes (T1D), based on findings of hyperglycaemia, glucosuria, ketonuria/-emia, lipemia, destroyed beta cells, and presence of autoantibodies against GAD65, IA-2, and insulin. AIM AND METHODS: We retrospectively analysed data from two separate colonies of Danish bank voles in order to 1) estimate survivorship after onset of PD, 2) evaluate whether the weight of PD voles differed from non-PD voles, and, 3), evaluate a state of PD as a practical and non-invasive tool to screen for voles with a high probability of hypeglycaemia. In addition, we discuss regional differences related to the development of diabetes in Scandinavian bank voles and the relevance of the Ljungan virus as proposed etiological agent. RESULTS: We found that median survival after onset of PD is at least 91 days (lower/upper quartiles = 57/134 days) with a maximum recording of at least 404 days survivorship. The development of PD did not influence the weight of Danish bank voles. The measures of accuracy when using PD as predictor of hyperglycaemia, i.e. sensitivity, specificity, positive predictive value, and negative predictive value, equalled 69%, 97%, 89%, and 89%, respectively. CONCLUSION: The relatively long survival of Danish PD bank voles suggests potentials for this model in future studies of the long-term complications of diabetes, of which some observations are mentioned. Data also indicates that diabetes in Danish bank is not associated with a higher body weight. Finally, the method of using measurements of daily water intake to screen for voles with a high probability of hyperglycaemia constitutes a considerable refinement when compared to the usual, invasive, methods

    Detection of Hepatitis B Virus Infection in Wild-Born Chimpanzees (Pan troglodytes verus): Phylogenetic Relationships with Human and Other Primate Genotypes

    Get PDF
    Infection with hepatitis B virus (HBV) was detected by serological testing for HBV surface antigen and by PCR assay for HBV DNA in serum samples from two common chimpanzees (Pan troglodytes subsp. verus) born in West Africa. The complete genome sequences obtained by nucleotide sequencing of overlapping DNA fragments amplified by PCR were compared with HBV variants recovered from other primates and with human genotypes A to F. Both chimpanzee sequences were 3,182 nucleotides in length, and the surface gene sequence predicted the existence of a, d, and w serological determinants. Neither sequence contained stop codons in the precore region. On phylogenetic analysis, the HBV variants infecting the chimpanzees clustered together with a third chimpanzee HBV isolate independently obtained from an infected captive animal (A. J. Zuckerman, A. Thornton, C. R. Howard, K. N. Tsiquaye, D. M. Jones, and M. R. Brambell, Lancet ii:652–654, 1978), with an overall sequence similarity of >94%. This provides strong evidence for a chimpanzee-specific genotype of HBV which circulates in nature. These findings add to the recent evidence for infection in the wild of other Old and New World primates (gibbon, orangutan, and woolly monkey) with species-specific variants of HBV. There is no evidence for close phylogenetic clustering of variants found so far in primates with any of the established HBV genotypes from humans. With the new evidence for the widespread distribution of HBV in primates, hypotheses for the origins of human infection are reviewed

    The Role of International Organizations in Global Health Governance

    Full text link
    Why did the global public health community fail to respond adequately to COVID-19, and what changes are needed for this network to better address future pandemics

    Interactions between Bacteriophage, Bacteria, and the Mammalian Immune System

    Get PDF
    The human body is host to large numbers of bacteriophages (phages)–a diverse group of bacterial viruses that infect bacteria. Phage were previously regarded as bystanders that only impacted immunity indirectly via effects on the mammalian microbiome. However, it has become clear that phages also impact immunity directly, in ways that are typically anti-inflammatory. Phages can modulate innate immunity via phagocytosis and cytokine responses, but also impact adaptive immunity via effects on antibody production and effector polarization. Phages may thereby have profound effects on the outcome of bacterial infections by modulating the immune response. In this review we highlight the diverse ways in which phages interact with human cells. We present a computational model for predicting these complex and dynamic interactions. These models predict that the phageome may play important roles in shaping mammalian-bacterial interactions
    • …
    corecore