1,264 research outputs found
Recommended from our members
Methodology for Modeling 2-D Groundwater Motion in a Geographic Information System (GIS)
Dynamics of axialized laser-cooled ions in a Penning trap
We report the experimental characterization of axialization - a method of
reducing the magnetron motion of a small number of ions stored in a Penning
trap. This is an important step in the investigation of the suitability of
Penning traps for quantum information processing. The magnetron motion was
coupled to the laser-cooled modified cyclotron motion by the application of a
near-resonant oscillating quadrupole potential (the "axialization drive").
Measurement of cooling rates of the radial motions of the ions showed an
order-of-magnitude increase in the damping rate of the magnetron motion with
the axialization drive applied. The experimental results are in good
qualitative agreement with a recent theoretical study. In particular, a
classical avoided crossing was observed in the motional frequencies as the
axialization drive frequency was swept through the optimum value, proving that
axialization is indeed a resonant effect.Comment: 8 pages, 9 figure
States for phase estimation in quantum interferometry
Ramsey interferometry allows the estimation of the phase of rotation
of the pseudospin vector of an ensemble of two-state quantum systems. For
small, the noise-to-signal ratio scales as the spin-squeezing parameter
, with possible for an entangled ensemble. However states with
minimum are not optimal for single-shot measurements of an arbitrary
phase. We define a phase-squeezing parameter, , which is an appropriate
figure-of-merit for this case. We show that (unlike the states that minimize
), the states that minimize can be created by evolving an
unentangled state (coherent spin state) by the well-known 2-axis
counter-twisting Hamiltonian. We analyse these and other states (for example
the maximally entangled state, analogous to the optical "NOON" state ) using several different properties, including ,
, the coefficients in the pseudo angular momentum basis (in the three
primary directions) and the angular Wigner function . Finally
we discuss the experimental options for creating phase squeezed states and
doing single-shot phase estimation.Comment: 8 pages and 5 figure
Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and #P problems
If quantum states exhibit small nonlinearities during time evolution, then
quantum computers can be used to solve NP-complete problems in polynomial time.
We provide algorithms that solve NP-complete and #P oracle problems by
exploiting nonlinear quantum logic gates. It is argued that virtually any
deterministic nonlinear quantum theory will include such gates, and the method
is explicitly demonstrated using the Weinberg model of nonlinear quantum
mechanics.Comment: 10 pages, no figures, submitted to Phys. Rev. Let
A quantum phase gate implementation for trapped ions in thermal motion
We propose a novel scheme to implement a quantum controlled phase gate for
trapped ions in thermal motion with one standing wave laser pulse. Instead of
applying the rotating wave approximation this scheme makes use of the
counter-rotating terms of operators. We also demonstrate that the same scheme
can be used to generate maximally entangled states of trapped ions by a
single laser pulse
Scale-invariant magnetoresistance in a cuprate superconductor
The anomalous metallic state in high-temperature superconducting cuprates is
masked by the onset of superconductivity near a quantum critical point. Use of
high magnetic fields to suppress superconductivity has enabled a detailed study
of the ground state in these systems. Yet, the direct effect of strong magnetic
fields on the metallic behavior at low temperatures is poorly understood,
especially near critical doping, . Here we report a high-field
magnetoresistance study of thin films of \LSCO cuprates in close vicinity to
critical doping, . We find that the metallic state
exposed by suppressing superconductivity is characterized by a
magnetoresistance that is linear in magnetic field up to the highest measured
fields of T. The slope of the linear-in-field resistivity is
temperature-independent at very high fields. It mirrors the magnitude and
doping evolution of the linear-in-temperature resistivity that has been
ascribed to Planckian dissipation near a quantum critical point. This
establishes true scale-invariant conductivity as the signature of the strange
metal state in the high-temperature superconducting cuprates.Comment: 10 pages, 3 figure
Direct evidence for a multiple superconducting gap in MgB2 from high-resolution photoemission spectroscopy
We study the new binary intermetallic superconductor MgB2 using
high-resolution photo-emission spectroscopy. The superconducting-state spectrum
measured at 5.4 K shows a coherent peak with a shoulder structure, in sharp
contrast to that expected from a simple isotropic-gap opening. The spectrum can
be well reproduced using the weighted sum of two Dynes functions with the gap
sizes of 1.7 and 5.6 meV. Temperature-dependent study shows that both gaps
close at the bulk transition temperature. These results provide spectroscopic
evidence for a multiple gap of MgB2.Comment: 4 pages in RevTeX format (3 Figures) submitted to PR
Nonlinear Schroedinger equation and two-level atoms
General features of nonlinear quantum mechanics are discussed in the context
of applications to two-level atoms
Creation of maximally entangled photon-number states using optical fiber multiports
We theoretically demonstrate a method for producing the maximally
path-entangled state (1/Sqrt[2]) (|N,0> + exp[iN phi] |0,N>) using
intensity-symmetric multiport beamsplitters, single photon inputs, and either
photon-counting postselection or conditional measurement. The use of
postselection enables successful implementation with non-unit efficiency
detectors. We also demonstrate how to make the same state more conveniently by
replacing one of the single photon inputs by a coherent state.Comment: 4 pages, 1 figure. REVTeX4. Replaced with published versio
- …