1,514 research outputs found

    Frequency and time standards based on stored ions

    Get PDF
    The method of ion storage provides a basis for excellent time and frequency standards. This is due to the ability to confine ions for long periods of time without the usual perturbations associated with confinement (e.g., wall shifts). In addition, Doppler effects can be greatly suppressed. The use of stored ions for microwave frequency standards and the future possibilities for an optical frequency standard based on stored ions are addressed

    Multi-particle entanglement of hot trapped ions

    Full text link
    We propose an efficient method to produce multi-particle entangled states of ions in an ion trap for which a wide range of interesting effects and applications have been suggested. Our preparation scheme exploits the collective vibrational motion of the ions, but it works in such a way that this motion need not be fully controlled in the experiment. The ions may, e.g., be in thermal motion and exchange mechanical energy with a surrounding heat bath without detrimental effects on the internal state preparation. Our scheme does not require access to the individual ions in the trap.Comment: 4 pages, including 3 figures. To appear in Phys. Rev. Lett. This paper previously appeared under the name "Schrodingers cat in a hot trap". The paper has been revised according to Phys. Rev. policy on Schrodinger cats. No cats were harmed during the production of this manuscrip

    Efficient engineering of multi-atom entanglement through single-photon detections

    Get PDF
    We propose an efficient scheme to engineer multi-atom entanglement by detecting cavity decay through single-photon detectors. In the special case of two atoms, this scheme is much more efficient than previous probabilistic schemes, and insensitive to randomness in the atom's position. More generally, the scheme can be used to prepare arbitrary superpositions of multi-atom Dicke states without the requirements of high-efficiency detection and separate addressing of different atoms.Comment: 5 pages, 2 figure

    Quantum state manipulation of trapped atomic ions

    Get PDF
    A single laser-cooled and trapped 9Be+ ion is used to investigate methods of coherent quantum-state synthesis and quantum logic. We create and characterize nonclassical states of motion including "Schroedinger-cat" states. A fundamental quantum logic gate is realized which uses two states of the quantized ion motion and two ion internal states as qubits. We explore some of the applications for, and problems in realizing, quantum computation based on multiple trapped ions.Comment: Postscript only. 21 pages text, 5 figures., Proc. Workshop on Quantum Computing, Santa Barbara, CA, Dec. 1996, Submitted to Proc. Roy. Soc.

    Dynamics of axialized laser-cooled ions in a Penning trap

    Full text link
    We report the experimental characterization of axialization - a method of reducing the magnetron motion of a small number of ions stored in a Penning trap. This is an important step in the investigation of the suitability of Penning traps for quantum information processing. The magnetron motion was coupled to the laser-cooled modified cyclotron motion by the application of a near-resonant oscillating quadrupole potential (the "axialization drive"). Measurement of cooling rates of the radial motions of the ions showed an order-of-magnitude increase in the damping rate of the magnetron motion with the axialization drive applied. The experimental results are in good qualitative agreement with a recent theoretical study. In particular, a classical avoided crossing was observed in the motional frequencies as the axialization drive frequency was swept through the optimum value, proving that axialization is indeed a resonant effect.Comment: 8 pages, 9 figure

    Decoherence due to elastic Rayleigh scattering

    Full text link
    We present theoretical and experimental studies of the decoherence of hyperfine ground-state superpositions due to elastic Rayleigh scattering of light off-resonant with higher lying excited states. We demonstrate that under appropriate conditions, elastic Rayleigh scattering can be the dominant source of decoherence, contrary to previous discussions in the literature. We show that the elastic-scattering decoherence rate of a two-level system is given by the square of the difference between the elastic-scattering \textit{amplitudes} for the two levels, and that for certain detunings of the light, the amplitudes can interfere constructively even when the elastic scattering \textit{rates} from the two levels are equal. We confirm this prediction through calculations and measurements of the total decoherence rate for a superposition of the valence electron spin levels in the ground state of 9^9Be+^+ in a 4.5 T magnetic field.Comment: 5 pages, 3 figure
    corecore