5 research outputs found

    Cardiomyocyte hypocontractility and reduced myofibril density in end-stage pediatric cardiomyopathy

    Get PDF
    Dilated cardiomyopathy amongst children (pediatric cardiomyopathy, pediatric CM) is associated with a high morbidity and mortality. Because little is known about the pathophysiology of pediatric CM, treatment is largely based on adult heart failure therapy. The reason for high morbidity and mortality is largely unknown as well as data on cellular pathomechanisms is limited. Here, we assessed cardiomyocyte contractility and protein expression to define cellular pathomechanisms in pediatric CM. Explanted heart tissue of 11 pediatric CM patients and 18 controls was studied. Contractility was measured in single membrane-permeabilized cardiomyocytes and protein expression was assessed with gel electrophoresis and western blot analysis. We observed increased Ca2+-sensitivity of myofilaments which was due to hypophosphorylation of cardiac troponin I, a feature commonly observed in adult DCM. We also found a significantly reduced maximal force generating capacity of pediatric CM cardiomyocytes, as well as a reduced passive force development over a range of sarcomere lengths. Myofibril density was reduced in pediatric CM compared to controls. Correction of maximal force and passive force for myofibril density normalized forces in pediatric CM cardiomyocytes to control values. This implies that the hypocontractility was caused by the reduction in myofibril density. Unlike in adult DCM we did not find an increase in compliant titin isoform expression in end-stage pediatric CM. The limited ability of pediatric CM patients to maintain myofibril density might have contributed to their early disease onset and severity

    Sex-specific cardiac remodeling in early and advanced stages of hypertrophic cardiomyopathy

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most frequent genetic cardiac disease with a prevalence of 1:500 to 1:200. While most patients show obstructive HCM and a relatively stable clinical phenotype (stage II), a small group of patients progresses to end-stage HCM (stage IV) within a relatively brie

    Development of a new therapeutic technique to direct stem cells to the infarcted heart using targeted microbubbles: StemBells

    Get PDF
    Successful stem cell therapy after acute myocardial infarction (AMI) is hindered by lack of engraftment of sufficient stem cells at the site of injury. We designed a novel technique to overcome this problem by assembling stem cell-microbubble complexes, named 'StemBells'.StemBells were assembled through binding of dual-targeted microbubbles (~ 3 μm) to adipose-derived stem cells (ASCs) via a CD90 antibody. StemBells were targeted to the infarct area
    corecore