374 research outputs found

    Antifeedant and Toxic Effect of Crude Extract from Flourensia oolepis and their Impact on Nutritional Parameters of Helicoverpa gelotopoeon

    Get PDF
    Botanical insecticides are one of the environmentally acceptable options for pest management. Extract of Flourensia oolepis (known as chilca), a plant endemic to the province of Córdoba, Argentina, has shown insecticidal activity. The aim of this work was to study the effect of crude extract of this F. oolepis on the nutritional parameters of Helicoverpa gelotopoeon, a polyphagous species recently reported as one of the most serious pests of chickpea. Choice tests were conducted using different doses of extract (1 to 10%) and acetone (control), and no-choice tests, feeding larvae for 10 days with chickpea leaves treated with extract (1 to 5%), with controls (water and acetone). We used three third instar larvae per replica and 8 repetitions of each. The variables measured were: consumption, fresh and dry weight of larvae, of feces and of the leaves given every 48 hours. We calculated the feeding inhibition and nutrition indices, and survival. In choice bioassays using the 10% dose, larvae preferred the control leaves, with the extract acting as a feeding inhibitor (92%). In the nochoice test, leaf consumption was markedly reduced with extract, affecting larval growth in a dose-dependent manner (p < 0.05), as well as feed utilization and lepidoptera survival. © JASEMKeywords: Helicoverpa gelotopoeon; Flourensia oolepis; Botanical insecticides; Pest; Food utilizatio

    Phenolic extracts from extra virgin olive oils inhibit dipeptidyl peptidase iv activity: In vitro, cellular, and in silico molecular modeling investigations

    Get PDF
    Two extra virgin olive oil (EVOO) phenolic extracts (BUO and OMN) modulate DPP-IV activity. The in vitro DPP-IV activity assay was performed at the concentrations of 1, 10, 100, 500, and 1000 μg/mL, showing a dose-dependent inhibition by 6.8 ± 1.9, 17.4 ± 6.1, 37.9 ± 2.4, 57.8 ± 2.9, and 81 ± 1.4% for BUO and by 5.4 ± 1.7, 8.9 ± 0.4, 28.4 ± 7.2, 52 ± 1.3, and 77.5 ± 3.5% for OMN. Moreover, both BUO and OMN reduced the DPP-IV activity expressed by Caco-2 cells by 2.9 ± 0.7, 44.4 ± 0.7, 61.2 ± 1.8, and 85 ± 4.2% and by 3 ± 1.9, 35 ± 9.4, 60 ± 7.2, and 82 ± 2.8%, respectively, at the same doses. The concentration of the most abundant and representative secoiridoids within both extracts was analyzed by nuclear magnetic resonance ((1)H-NMR). Oleuropein, oleacein, oleocanthal, hydroxytyrosol, and tyrosol, tested alone, reduced the DPP-IV activity, with IC(50) of 472.3 ± 21.7, 187 ± 11.4, 354.5 ± 12.7, 741.6 ± 35.7, and 1112 ± 55.6 µM, respectively. Finally, in silico molecular docking simulations permitted the study of the binding mode of these compounds

    Virgin olive oil extracts reduce oxidative stress and modulate cholesterol metabolism: Comparison between oils obtained with traditional and innovative processes

    Get PDF
    This study was aimed at demonstrating the substantial equivalence of two extra virgin olive oil samples extracted from the same batch of Coratina olives with (OMU) or without (OMN) using ultrasound technology, by performing chemical, biochemical, and cellular investigations. The volatile organic compounds compositions and phenolic profiles were very similar, showing that, while increasing the extraction yields, the innovative process does not change these features. The antioxidant and hypocholesterolemic activities of the extra virgin olive oil (EVOO) phenol extracts were also preserved, since OMU and OMN had equivalent abilities to scavenge the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals in vitro and to protect HepG2 cells from oxidative stress induced by H2 O2, reducing intracellular reactive oxygen species (ROS) and lipid peroxidation levels. In addition, by inhibiting 3-hydroxy-3-methylglutarylcoenzyme a reductase, both samples modulated the low-density lipoprotein receptor (LDLR) pathway leading to increased LDLR protein levels and activity

    Extra virgin olive oil phenol extracts exert hypocholesterolemic effects through the modulation of the LDLR pathway: In vitro and cellular mechanism of action elucidation

    Get PDF
    This study was aimed at investigating the hypocholesterolemic effects of extra virgin olive oil (EVOO) phenols and the mechanisms behind the effect. Two phenolic extracts were prepared from EVOO of different cultivars and analyzed using the International Olive Council (IOC) official method for total phenols, a recently validated hydrolytic procedure for total hydroxytyrosol and tyrosol, and 1H-NMR analysis in order to assess their secoiridoid profiles. Both of the extracts inhibited in vitro the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in a dose-dependent manner. After the treatment of human hepatic HepG2 cells (25 µg/mL), they increased the low-density lipoprotein (LDL) receptor protein levels through the activation of the sterol regulatory element binding proteins (SREBP)-2 transcription factor, leading to a better ability of HepG2 cells to uptake extracellular LDL molecules with a final hypocholesterolemic effect. Moreover, both of the extracts regulated the intracellular HMGCoAR activity through the increase of its phosphorylation by the activation of AMP-activated protein kinase (AMPK)-pathways. Unlike pravastatin, they did not produce any unfavorable effect on proprotein convertase subtilisin/kexin 9 (PCSK9) protein level. Finally, the fact that extracts with different secoiridoid profiles induce practically the same biological effects suggests that the hydroxytyrosol and tyrosol derivatives may have similar roles in hypocholesterolemic activity

    Extra virgin olive oil phenol extracts exert hypocholesterolemic effects through the modulation of the LDLR pathway: In vitro and cellular mechanism of action elucidation

    Get PDF
    This study was aimed at investigating the hypocholesterolemic effects of extra virgin olive oil (EVOO) phenols and the mechanisms behind the effect. Two phenolic extracts were prepared from EVOO of different cultivars and analyzed using the International Olive Council (IOC) official method for total phenols, a recently validated hydrolytic procedure for total hydroxytyrosol and tyrosol, and1 H-NMR analysis in order to assess their secoiridoid profiles. Both of the extracts inhibited in vitro the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in a dose-dependent manner. After the treatment of human hepatic HepG2 cells (25 µg/mL), they increased the low-density lipoprotein (LDL) receptor protein levels through the activation of the sterol regulatory element binding proteins (SREBP)-2 transcription factor, leading to a better ability of HepG2 cells to uptake extracellular LDL molecules with a final hypocholesterolemic effect. Moreover, both of the extracts regulated the intracellular HMGCoAR activity through the increase of its phosphorylation by the activation of AMP-activated protein kinase (AMPK)-pathways. Unlike pravastatin, they did not produce any unfavorable effect on proprotein convertase subtilisin/kexin 9 (PCSK9) protein level. Finally, the fact that extracts with different secoiridoid profiles induce practically the same biological effects suggests that the hydroxytyrosol and tyrosol derivatives may have similar roles in hypocholesterolemic activity

    Enhancement of the Stability and Anti-DPPIV Activity of Hempseed Hydrolysates Through Self-Assembling Peptide-Based Hydrogels

    Get PDF
    Although there is an increasing interest for bioactive food protein hydrolysates as valuable ingredients for functional food and dietary supplement formulations, their potential applications are hampered by their insufficient stability in physiological conditions. In this study, an innovative strategy based on nanomaterials was developed in order to increase the hempseed hydrolysate stability and the anti-diabetic properties, through their encapsulation into ionic self-complementary RADA16 peptide based-hydrogels. Atomic force microscope (AFM) morphological analysis indicated that the new nanomaterials were composed of a nanofibril network, whose increased diameter in respect to native RADA16 suggests the presence of transient non-covalent interactions among the RADA16 supramolecular assemblies and the embedded hempseed peptides. Structural analysis by FT-IR spectroscopy indicated typical beta-sheet signatures. The RADA16-hempseed protein hydrolysate hydrogel was shown to act as a novel dipeptidyl peptidase IV (DPPIV) inhibitor in different biological assays. Finally, this nanoformulation was used as a drug delivery system of the anti-diabetic drug sitagliptin, helping to reduce its dosage and eventually associated side-effects

    Solución discreta explìcita de un problema de control óptimo distribuido

    Get PDF
    Se considera un sistema estacionario de conducción del calor S en un dominio multidimensional acotado para la ecuación de Poisson con una fuente y con condiciones de contorno mixtas dadas por una temperatura en la porción de frontera F1, un flujo de calor en la porción F2 y una condición adiabática sobre la restante porción de frontera F3. Se considera además, un problema de control óptimo P para el sistema S con una función de costo cuadrático. Para el sistema S con dominio rectangular, se conocen de manera explícita, el control óptimo continuo y el estado correspondiente del sistema. Eneste trabajo, mediante el método de diferencias finitas, se discretiza el sistema S obteniéndose el sistema Sh y el problema Ph correspondiente, siendo h el paso espacial en la discretización. El objetivo deltrabajo es hallar las soluciones del problema control óptimo y del sistema discretos en forma explícita. Luego, estudiar la convergencia de la familia de estados discretos solución de Sh a la solución continuadel sistema S y la convergencia de la familia de soluciones de los problemas Ph discretos a la solución del problema continuo P hallándose el orden de convergencia. Los resultados teóricos se chequean conresultados numéricos para distintos valores del paso espacial h cuando h tiende a cero. Estas soluciones discretas explícitas podrían ser utilizadas para chequear cálculos numéricos en condiciones de dominios generales.Publicado en: Mecánica Computacional vol. XXXV no. 29Facultad de Ingenierí

    Lupin Peptide T9 (GQEQSHQDEGVIVR) Modulates the Mutant PCSK9D374Y Pathway : in vitro Characterization of its Dual Hypocholesterolemic Behavior

    Get PDF
    GQEQSHQDEGVIVR (T9) is a peptide originated by the tryptic digestion of lupin \u3b2-conglutin that is absorbed in human intestinal Caco-2 cells. A previous study has shown that T9 impairs the protein-protein interaction between mutant D374Y Proprotein Convertase Subtilisin/Kexin 9 (PCSK9D374Y) and the low-density lipoprotein receptor (LDLR), thus exerting a hypocholesterolemic effect. Moreover, a bioinformatic study predicting that T9 may potentially act as an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCoAR), has suggested a complementary cholesterol-lowering activity. The present study demonstrates that T9 inhibits in vitro the HMGCoAR functionality with an IC50 value of 99.5 \ub1 0.56 \ub5M. Through the inhibition of either HMGCoAR or PCSK9D374Y activities, T9 enhances the LDLR protein levels leading to an improved ability of HepG2 cells transfected with the mutant PCSK9D374Y-FLAG plasmid to uptake extracellular LDL with a final cholesterol-lowering effect. In addition, T9 modulates the PCSK9D374Y signaling pathway in transfected HepG2 cells leading to a decrease of PCSK9D374Y and HNF-1\u3b1 protein levels. All these results indicate that the hypocholesterolemic effects of T9 are due to a dual mechanism of action involving either the modulation of the PCSK9D374Y or LDLR pathways. This may represent an added value from a therapeutic point of view

    Particulate Air Pollution, Clock Gene Methylation, and Stroke : Effects on Stroke Severity and Disability

    Get PDF
    Circadian rhythm disturbances have been consistently associated with the development of several diseases, particularly cardiovascular diseases (CVDs). A central clock in the brain maintains the daily rhythm in accordance with the external environment. At the molecular level, the clock is maintained by \u201cclock genes\u201d, the regulation of which is mainly due to DNA methylation, a molecular mechanism of gene expression regulation, able to react to and be reprogrammed by environmental exposure such as exposure to particulate matter (PM). In 55 patients with a diagnosis of acute ischemic stroke, we showed that PM2.5 exposure experienced before the event influenced clock genes methylation (i.e., circadian locomotor output cycles protein kaput CLOCK, period 2 PER2, cryprochrome 1 CRY1, Neuronal PAS Domain Protein 2 NPAS2), possibly modulating the patient prognosis after the event, as cryptochrome 1 CRY1 and period 1 PER1 methylation levels were associated with the Rankin score. Moreover, if PM2.5 annual average was low, CRY1/CRY2 methylation levels were positively associated with the National Institutes of Health Stroke Scale (NIHSS) score, whereas they were negatively associated if PM2.5 exposure was high. Whether epigenetic changes in clock genes need to be considered as a prognostic marker of stroke or rather a causal agent in stroke development remains to be determined. Further studies are needed to determine the role of clock gene methylation in regulating the response to and recovery after a stroke event

    Morphological evaluation of buffelgrass cultivar “Lucero INTA-PEMAN” in drought conditions

    Get PDF
    In searching for new cultivars that are better adapted to edapho-climatic constraints existing in northwestern Argentina, mainly drought and salinity stress, a hybrid of buffelgrass (Cenchrus ciliaris L.) named Lucero INTA PEMAN was obtained by controlled crosses at the Instituto de Fitopatología y Fisiología Vegetal, INTA. The objective was to morphologically evaluate and compare Cenchrus ciliaris cv Lucero with Texas-4464, Biloela and Molopo cultivars in Dean Funes (North of the Province of Córdoba, Argentina) under drought field conditions using a randomized complete block design with three replications in two crop cycles (2006/2007 and 2007/2008) considering one-year plant and re-growth as ontogenic stages of the plant, respectively. Thirteen morphological characters were analyzed by ANOVA and DGC testing (p <0.05). Although most of the thirteen morphological characters evaluated showed decreased re-growth over one-year plants, Lucero was least affected by low water availability, showed highest values for seed production components in both ontogenic stages and was superior to Texas-4464 in biomass production characters and to Biloela and Molopo cultivars in most of them. Lucero showed a promising and considerable forage value for drought-affected regions, such as northwestern Argentina
    corecore