867 research outputs found

    Influence of viscosity and the adiabatic index on planetary migration

    Full text link
    The strength and direction of migration of low mass embedded planets depends on the disk's thermodynamic state, where the internal dissipation is balanced by radiative transport, and the migration can be directed outwards, a process which extends the lifetime of growing embryos. Very important parameters determining the structure of disks, and hence the direction of migration, are the viscosity and the adiabatic index. In this paper we investigate the influence of different viscosity prescriptions (alpha-type and constant) and adiabatic indices on disk structures and how this affects the migration rate of planets embedded in such disks. We perform 3D numerical simulations of accretion disks with embedded planets. We use the explicit/implicit hydrodynamical code NIRVANA that includes full tensor viscosity and radiation transport in the flux-limited diffusion approximation, as well as a proper equation of state for molecular hydrogen. The migration of embedded 20Earthmass planets is studied. Low-viscosity disks have cooler temperatures and the migration rates of embedded planets tend toward the isothermal limit. In these disks, planets migrate inwards even in the fully radiative case. The effect of outward migration can only be sustained if the viscosity in the disk is large. Overall, the differences between the treatments for the equation of state seem to play a more important role in disks with higher viscosity. A change in the adiabatic index and in the viscosity changes the zero-torque radius that separates inward from outward migration. For larger viscosities, temperatures in the disk become higher and the zero-torque radius moves to larger radii, allowing outward migration of a 20 Earth-mass planet to persist over an extended radial range. In combination with large disk masses, this may allow for an extended period of the outward migration of growing protoplanetary cores

    Genomics of a Metamorphic Timing QTL: Met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription

    Get PDF
    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation

    Genomics of a metamorphic timing QTL: \u3ci\u3emet1\u3c/i\u3e maps to a unique genomic position and regulates morph and species-specific patterns of brain transcription

    Get PDF
    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect QTL (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele specific chromosome rearrangement on linkage group 2 that uniquely brought functionally-associated genes into linkage. Further, we found that \u3e 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation

    The VLTI/MIDI survey of massive young stellar objects - Sounding the inner regions around intermediate- and high-mass young stars using mid-infrared interferometry

    Get PDF
    We aim to characterize the distribution and composition of circumstellar material around young massive stars, and to investigate exactly which physical structures in these objects are probed by long-baseline mid-infrared interferometric observations. We used the two-telescope interferometric instrument MIDI of the Very Large Telescope Interferometer of the European Southern Observatory to observe a sample of 24 intermediate- and high-mass young stellar objects in the N band (8-13 micron). We had successful fringe detections for 20 objects, and present spectrally-resolved correlated fluxes and visibility levels for projected baselines of up to 128 m. We fit the visibilities with geometric models to derive the sizes of the emitting regions, as well as the orientation and elongation of the circumstellar material. Fourteen objects in the sample show the 10 micron silicate feature in absorption in the total and correlated flux spectra. For 13 of these objects, we were able to fit the correlated flux spectra with a simple absorption model, allowing us to constrain the composition and absorptive properties of the circumstellar material. Nearly all of the massive young stellar objects observed show significant deviations from spherical symmetry at mid-infrared wavelengths. In general, the mid-infrared emission can trace both disks and outflows, and in many cases it may be difficult to disentangle these components on the basis of interferometric data alone, because of the sparse spatial frequency coverage normally provided by current long-baseline interferometers. For the majority of the objects in this sample, the absorption occurs on spatial scales larger than those probed by MIDI. Finally, the physical extent of the mid-infrared emission around these sources is correlated with the total luminosity, albeit with significant scatter.Comment: 36 pages, 22 figures. Accepted to Astronomy and Astrophysic

    Hydraulic/Shock-Jumps in Protoplanetary Disks

    Full text link
    In this paper, we describe the nonlinear outcome of spiral shocks in protoplanetary disks. Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the post-shock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hybrids between shocks and hydraulic jumps (shock bores) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that shock bores produce and discuss possible consequences for disk mixing, turbulence, and evolution of solids.Comment: 39 pages, 18 figures, 1 table. Edited to match as closely as possible the ApJ proofs, which resulted in the correction of several typos. In addition, section 5.3 was slightly altered because an error in an analysis tool was discovered; the differences between the entropy gradient method and the Schwarzschild criterion method are minor. Figure 18 now only includes what was Figure18
    • …
    corecore