1,111 research outputs found

    The Two Modes of Gas Giant Planet Formation

    Full text link
    I argue for two modes of gas giant planet formation and discuss the conditions under which each mode operates. Gas giant planets at disk radii r>100r>100 AU are likely to form in situ by disk instability, while core accretion plus gas capture remains the dominant formation mechanism for r<100r<100 AU. During the mass accretion phase, mass loading can push disks toward fragmentation conditions at large rr. Massive, extended disks can fragment into clumps of a few to tens of Jupiter masses. This is confirmed by radiation hydrodynamics simulations. The two modes of gas giant formation should lead to a bimodal distribution of gas giant semi-major axes. Because core accretion is expected to be less efficient in low-metallicity systems, the ratio of gas giants at large rr to planets at small rr should increase with decreasing metallicity.Comment: Submitted to ApJL after addressing referee's comment

    On The Possibility of Enrichment and Differentiation in Gas Giants During Birth by Disk Instability

    Full text link
    We investigate the coupling between rock-size solids and gas during the formation of gas giant planets by disk fragmentation in the outer regions of massive disks. In this study, we use three-dimensional radiative hydrodynamics simulations and model solids as a spatial distribution of particles. We assume that half of the total solid fraction is in small grains and half in large solids. The former are perfectly entrained with the gas and set the opacity in the disk, while the latter are allowed to respond to gas drag forces, with the back reaction on the gas taken into account. To explore the maximum effects of gas-solid interactions, we first consider 10cm-size particles. We then compare these results to a simulation with 1 km-size particles, which explores the low-drag regime. We show that (1) disk instability planets have the potential to form large cores due to aerodynamic capturing of rock-size solids in spiral arms before fragmentation; (2) that temporary clumps can concentrate tens of M⊕M_{\oplus} of solids in very localized regions before clump disruption; (3) that the formation of permanent clumps, even in the outer disk, is dependent on the grain-size distribution, i.e., the opacity; (4) that nonaxisymmetric structure in the disk can create disk regions that have a solids-to-gas ratio greater than unity; (5) that the solid distribution may affect the fragmentation process; (6) that proto-gas giants and proto-brown dwarfs can start as differentiated objects prior to the H2_2 collapse phase; (7) that spiral arms in a gravitationally unstable disk are able to stop the inward drift of rock-size solids, even redistributing them to larger radii; and, (8) that large solids can form spiral arms that are offset from the gaseous spiral arms. We conclude that planet embryo formation can be strongly affected by the growth of solids during the earliest stages of disk accretion.Comment: Accepted by ApJ. 55 pages including 24 figures. In response to comments from the referee, we have included a new simulation with km-size objects and have revised some discussions and interpretations. Major conclusions remain unchanged, and new conclusions have been added in response to the new ru

    The Heavy Element Composition of Disk Instability Planets Can Range From Sub- to Super-Nebular

    Full text link
    Transit surveys combined with Doppler data have revealed a class of gas giant planets that are massive and highly enriched in heavy elements (e.g., HD149026b, GJ436b, and HAT-P-20b). It is tempting to consider these planets as validation of core accretion plus gas capture because it is often assumed that disk instability planets should be of nebular composition. We show in this paper, to the contrary, that gas giants that form by disk instability can have a variety of heavy element compositions, ranging from sub- to super-nebular values. High levels of enrichment can be achieved through one or multiple mechanisms, including enrichment at birth, planetesimal capture, and differentiation plus tidal stripping. As a result, the metallicity of an individual gas giant cannot be used to discriminate between gas giant formation modes.Comment: Accepted by Ap

    High-Temperature Processing of Solids Through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles

    Full text link
    A fundamental, unsolved problem in Solar System formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks has been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through 3D radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H2_2 is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ∼\simfew×10−8\times10^{-8} L⊙_{\odot}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.Comment: Accepted for publication in ApJ. Images have been resized to conform to arXiv limits, but are all readable upon adjusting the zoom. Changes from v1: Corrected typos discovered in proofs. Most changes are in the appendi
    • …
    corecore