2,163 research outputs found

    Increasing the Transparency, Accountability and Controllability of multi-domain networks with the UPIN framework

    Get PDF
    Demands for a more trustworthy Internet are constantly increasing, in particular to support emerging critical services such as intelligent urban transport systems and smart energy grids. Such cyber-physical systems require more insight into the properties of network operators (e.g., in terms of the security posture of their equipment) and more control over which network operators transport their data, thus going well beyond the traditional security paradigm which the Internet security community currently focuses on (confidentiality, availability, and integrity). In this work-in-progress paper we propose the UPIN framework, which aims to fulfill these new trust requirements. The framework advances the state-of-the-art by defining components needed to incorporate transparency, accountability, and controllability into the Internet or other types of inter-domain networks. The framework is based on our analysis of a smart grid use case to understand the specific needs of critical service providers and a literature study on existing technologies. We also discuss our ongoing work, and the demands and challenges of implementing and deploying the UPIN framework

    Response to erlotinib in a patient with lung adenocarcinoma harbouring the EML4-ALK translocation: A case report.

    Get PDF
    Lung cancer is the leading cause of cancer-associated mortality worldwide, and the mainstay of treatment remains to be personalised therapy. Tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR-TKIs) have been reported to exert a significant impact in the treatment of non-small cell lung cancer (NSCLC), particularly in patients harbouring mutations in the EGFR gene. The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) gene translocation has been described in a subset of patients with NSCLC and possesses potent oncogenic activity. This translocation represents one of the most novel molecular targets in the treatment of NSCLC. Patients who harbour the EML4-ALK rearrangement possess lung tumours that lack EGFR or K-ras mutations. The present study reports the case of a patient possessing the EML4-ALK rearrangement that was initially treated with erlotinib and achieved a lasting clinical response. To the best of our knowledge, the current study is the first report of a clinical response to EGFR-TKI in a patient with lung adenocarcinoma harbouring the EML4-ALK fusion gene, but no EGFR mutations. However, as the disease progressed, the ALK gene status of the tumour was investigated, and based upon a positive result, the patient was treated with crizotinib and achieved a complete response. In conclusion, the present study suggests that the EML4-ALK rearrangement is not always associated with resistance to EGFR-TKIs. Further studies are required to clarify the biological features of these tumours and to investigate the mechanisms underlying the primary resistance to EGFR-TKIs when the EML4-ALK rearrangement is present

    2n Gamete formation in the genus Brachiaria (Poaceae: Paniceae).

    Get PDF
    Microsporogenesis of several Brachiaria species of the Brazilian collection at Embrapa Beef Cattle has been analyzed in detail. This paper reports abnormal cytokinesis in three accessions of three different species (Brachiaria humidicola, 2n = 4x = 36, Brachiaria decumbens, 2n = 4x = 36, and Brachiaria dura, 2n = 6x = 54). Chromosomes paired in bi-, tri-, and quadrivalents in these accessions, whereas chromosome segregation at meiosis I was characterized by exclusion of laggards as micronuclei. In a high number of meiocytes, the first sign of cytokinesis appeared only in metaphase II and did not divide the meiocyte into a dyad. Total absence of cytokinesis was also detected among meiocytes in the second division. Since in both cases the two metaphase plates were very close, they favored the rejoining of chromosome sets after anaphase II and formed a restitutional nucleus in telophase II. Second cytokinesis occurred after telophase II in most meiocytes. Monads, dyads, and triads with n or 2n nuclei were observed among meiotic products. The 2n gametes observed correspond to the first division restitution (FDR). The number of affected cells in each accession was variable, but the number of microspores with restitutional nucleus, including those scored in tetrads and the released ones, did not exceed 9%. Although polyploidy is common in the genus Brachiaria, its origin is still unclear. Current results suggest that 2n gametes may have contributed to the evolutionary history of the genus.CNPGC

    Calix[4]arene-Based Sensitizers for Host-Guest Supramolecular Dyads for Solar Energy Conversion in Photoelectrochemical Cells

    Get PDF
    The photogeneration of electricity and solar fuels by solar irradiation in photoelectrochemical cells is one of the sectors with the highest growth potential in the decarbonised society. However, the use of different components, in particular photosensitizers and catalysts, can present problems of charge transfer efficiency at the interface, leading to lower final efficiencies. In this work we present novel integrated photosensitizer-catalyst dyads based on robust and, at the same time, flexible host-guest non-covalent interactions through the use of calix[4]arene cavities. Current photogeneration in photoelectrochemical cells showed twice greater efficiency in the integrated calixarene-based host-guest dyads compared to the traditional architecture based on the separate photosensitizer-catalyst pair. Molecular dynamics studies have shown that the enhanced performance originates from an optimization of the distances between the centres of the photosensitizer, catalyst and semiconductor involved in the charge transfer processes, thus allowing a higher final efficiency of the charge photogeneration process

    C-MYC, HIF-1α, ERG, TKT, and GSTP1: an Axis in Prostate Cancer?

    Get PDF
    To analyze putative biomarkers for prostate cancer (PCA) characterization, the second leading cause of cancer-associated mortality in men. Quantification of the expression level of c-myc and HIF-1α was performed in 72 prostate cancer specimens. A cohort of 497 prostate cancer patients from The Cancer Genome Atlas (TCGA) database was further analyzed, in order to test our hypothesis. We found that high c-myc level was significantly associated with HIF-1α elevated expression (p = 0.008) in our 72 samples. Statistical analysis of 497 TCGA prostate cancer specimens confirmed the strong association (p = 0.0005) of c-myc and HIF-1α expression levels, as we found in our series. Moreover, we found high c-myc levels significantly associated with low Glutatione S-transferase P1 (GSTP1) expression (p = 0.01), with high Transketolase (TKT) expression (p < 0.0001). High TKT levels were found in TCGA samples with low GSTP1 mRNA (p < 0.0001), as shown for c-myc, and with ERG increased expression (p = 0.02). Finally, samples with low GSTP1 expression displayed higher ERG mRNA levels than samples with high GSTP1 score (p < 0.0001), as above shown for c-myc. Our study emphasizes the notion of a potential value of HIF-1α and c-myc as putative biomarkers in prostate cancer; moreover TCGA data analysis showed a putative crosstalk between c-myc, HIF-1α, ERG, TKT, and GSTP1, suggesting a potential use of this axis in prostate cancer

    Multibranched Calix[4]arene-Based Sensitizers for Efficient Photocatalytic Hydrogen Production

    Get PDF
    In the field of direct production of hydrogen from solar energy and water, photocatalytic methods hold great potential especially when metal-free molecular components are preferred. In this work, we have developed a new class of calix[4]arene-based molecular photosensitizers to be used as antenna systems in the photocatalytic production of hydrogen. The structure of the dyes has a typical donor-Ď€-acceptor molecular architecture where a calix[4]arene scaffold is used as an embedded donor. The new materials have been fully characterized in their optical, electrochemical, and photocatalytic properties. The properties conferred by the calix[4]arene donor afforded twice larger performances compared to the corresponding linear system though showing similar quantitative optical properties. The new molecular design paves the way to a new strategy for photocatalytic hydrogen production where the calix[4]arene scaffold can afford more efficient systems and can offer the potential for host-guest supramolecular effects
    • …
    corecore