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Abstract 

 

Purpose: To analyze putative biomarkers for prostate cancer (PCA) characterization, the second leading cause of 

cancer-associated mortality in men.  

Methods: Quantification of the expression level of c-myc and HIF-1α mRNA with Real-Time PCR technology was 

performed in seventy-two prostate cancer specimens. A cohort of 497 prostate cancer patients from The Cancer 

Genome Atlas (TCGA) database was further analyzed, in order to test our hypothesis. 

Results: We found that high c-myc level was significantly associated with HIF-1α elevated expression (p=0.008) in 

our 72 samples. Statistical analysis of 497 TCGA prostate cancer specimens confirmed the strong association 

(p=0.0005) of c-myc and HIF-1α expression levels, as we found in our series. Moreover, we found high c-myc levels 

significantly associated with low GSTP1 expression (p=0.01), with high TKT expression (p<0.0001). High TKT 

levels were found in TCGA samples with low GSTP1 mRNA (p<0.0001), as shown for c-myc, and with ERG 

increased expression  (p=0.02). Finally, samples with low GSTP1 expression displayed higher ERG mRNA levels 

than samples with high GSTP1 score (p<0.0001), as above shown for c-myc. 

Conclusions: Our study emphasizes the notion of a potential value of HIF-1α and c-myc as putative biomarkers in 

prostate cancer; moreover TCGA data analysis showed a putative crosstalk between c-myc, HIF-1α, ERG, TKT, and 

GSTP1, suggesting a potential use of this axis in prostate cancer. 
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Introduction 

 

Prostate cancer (PCA) is the second leading cause of cancer-associated mortality in men. One of the greatest 

challenges in the management of prostate cancer patients is identifying biomarkers to predict clinical outcome. 

Gleason score, tumor stage, margin status and PSA levels represent classical prognostic factors, but they are 

insufficient for discriminating between patients with indolent tumors that are unlikely to progress and may be 

potentially over-treated and patients with aggressive, fatal disease.  

The activation of the proto-oncogene myc is one of the earliest molecular alterations in prostate cancer [1], and it 

may be considered an important biomarker in the early detection and diagnosis of this disease. Myc protein 

expression has been described as detected by immunohistochemistry [2], as well as upregulation of myc at the 

mRNA level [3], but the mechanism responsible in prostate cancer remains unclear. Myc is able to directly and 

indirectly regulate the transcription of several genes and pathways. 

HIF-1α overexpression has been associated with shorter time to biochemical recurrence, metastasis, and 

chemoresistance in prostate cancer patients [4-6]. Considering the role of HIF-1α in the activation of several cancer-

related pathways, it should be an attractive target for cancer therapy [7], and a better knowledge of HIF-1α 

regulation in prostate cancer could provide better outcomes and therapeuthic chances for men with prostate cancer. 

The occurence of prostate cancer has been associated with environmental factors, such as Glutathione S-transferase 

P1 (GSTP1), an  enzyme of the glutathione S-transferases (GSTs) family modulating signaling pathways involved in 

cell proliferation, differentiation, and apoptosis. GSTP1 overexpression has been suggested to play a protective role 

in prostate cancer in vitro and in vivo through targeting c-myc [8]. 

Transketolase (TKT) is considered involved in so-called tumor metabolic reprogramming, and TKT activity is 

increased in rapidly growing breast cancer cells [9], but its role in prostate cancer and the putative crosstalk with c-

myc has not yet been analysed.  

In the last decade, the discovery of oncoproteins and gene rearrangements/fusion genes associated to the progression 

of prostate cancer, has brought a great progress in identifying new modalities of treatment. One of the most common 

rearrangements in prostate cancer is the TMPRSS2-ERG fusion. ERG has been reported as an early event in prostate 

carcinogenesis, but its role in prostate cancer progression is still controversy [10-18].  

From the perspective above, the aim of this study was to examine simultaneously expression of c-myc and HIF-1α in 
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our 72 prostate cancer specimens, adding TCGA data concerning also other gene analysis (GSTP1, TKT, and ERG) 

in order to understand their potential use of this axis as biomarker in prostate cancer. 
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Materials and Methods 

 

Patients  

A total of 72 prostate cancer patients who underwent surgical resection in Division of Urology, Department of 

Translational Research, at Pisa University between 2010 and 2015 were retrospectively selected. Histological 

diagnoses were independently formulated by PF, according to the World Health Organization classification. Clinic-

pathological characteristics were collected whenever available for all the patients. Our study was conducted in 

accordance with the ethical standards of our institutional research committee and with the 1964 Helsinki declaration; 

all the patients gave their informed consent to the molecular analyses.  

The Cancer Genome Atlas (TCGA) database. From the TCGA data portal (http://tcga.cancer.gov/; accessed 

December 2017), we extracted c-myc; HIF-1α; GSTP1, TKT, and ERG expression together with the corresponding 

clinical-pathological characteristics and survival data for 497 prostate cancer patients.  

 

RNA isola tion  

 

Total RNA were isolated from a representative area selected and marked on the surface of 5 micron sections of 

formalin-fixed, paraffin-embedded (FFPE) tissues using the miRNeasy FFPE Kit (Qiagen Inc., Hilden, Germany) 

according to the manufacturer’s instructions. The quality and concentration of RNA was assessed using a NanoDrop 

spectrophotometer (Thermo-Scientific, Wilmington, Del). 

 

c-myc and HIF-1α mRNA express ion  

A total of 600 ng of total RNA was used to synthesize cDNA using the RevertAid First Strand cDNA Synthesis Kit 

(Thermo Scientific, Waltham, MA, USA) in a reaction volume of 20 μl. Simultaneous quantification of the 

expression level of c-myc and HIF-1α with real-time PCR technology (qPCR) was performed in 72 prostate cancer 

specimens. Quantification was carried out in triplicate using the Rotor Gene Sybr Green PCR Kit (Qiagen) on a 

Rotor Gene 6000 (Qiagen) instrument. The following primers were used for qPCR: for c-myc, forward primer: 5’-

http://tcga.cancer.gov/
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CCTCAACGTTAGCTTCACCAAC-3’ and reverse primer: 5’-CTGCTGGTAGAAGTTCTCCTC-3’); for HIF-1α, 

forward primer: 5’-TTTAGGCCGCTCAATTTATGA-3’ and reverse primer: 5’-TCCTGTGGTGACTTGTCCTT-

3’); and for beta-Actin, forward primer: 5’-CCAACCGCGAGAAGATGA-3’ and reverse primer: 5’-

CCAGAGGCGTACAGGGATAG-3’. The threshold cycle (Ct) and baselines were determined by the manual 

settings. Expression was calculated by relative quantification using beta-Actin as reference control for c-myc and 

HIF-1α. Fold expression changes were determined by the 2 -  method, using a pool of 12 non-cancerous tissues 

as a calibrator group; the analysis was performed by the DataAssistTM software (Applied Biosystems, Foster City, 

California, USA). 

 

Statistical analysis 

 

Differential expression was determined by applying the non-parametric Wilcoxon test in order to determine the 

association between mRNAs expression and the clinic-pathological parameters. Survival analyses were performed 

using the Kaplan-Meier method with log-rank test and the Cox proportional hazard model. Statistical analyses were 

performed using JMP10 software (SAS, Milan, Italy), and a two-tailed p-value <0.05 was considered significant.  
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Results  

 

Patient  character is t ics  

 

This study was conducted in 72 patients with prostate cancer, with a median age at diagnosis of 67 years (range: 51-

78, mean: 66.4 years). Most of the tumors were pT2c (48 cases), 12 tumors were pT3a, 3 cases were pT2b, and there 

were 4 cases for pT2a and 5 for pT3b. Regarding the Gleason score there was only 1 case with score 9, there were 8 

cases with score 8 (4+4 in 7 cases, and 5+3 in 1 case), 35 tumors with Gleason score 7 (3+4 in 28 cases, and 4+3 in 

8 cases), and 27 cases with score 6.  

 

c-myc and HIF-1α mRNA expression in our prostate cancer samples 

 

We quantified c-myc and HIF-1α mRNA expression, normalized to the -actin housekeeping gene, using real-time 

qPCR. The samples were divided into high and low expression groups based on the median fold-change value 

(265.87 for c-myc and 2.24 for HIF-1α). C-myc mRNA expression was low in 36/72 (50%) cases, as well as HIF-1α 

in 36/72 (50%) cases. We determined whether c-myc and HIF-1α expression were correlated with the main clinic-

pathological characteristics, but no statistically significant associations were observed (Table 1). 

Focusing on the relationship between c-myc and HIF-1α expression, we found that high c-myc level was 

significantly associated with HIF-1α elevated expression (chi-square test, p=0.0008). Figure 1 showed that samples 

with a low HIF-1α level expression displayed lower c-myc mRNA levels (270.17 fold change value ± 76.99) than 

samples with high HIF-1α score (650.9 ± 77) (t-test, p=0.0008). 

 

 

TCGA data analysis.  

 

A cohort of 497 prostate cancer patients from TCGA database was further analyzed, in order to validate our findings 

and to add more data on a larger population. The samples were divided into high and low expression groups based 

on the median value of c-myc and HIF-1α in a first step, then of GSTP1, TKT, and ERG expression.  
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Statistical analysis of 497 TCGA prostate cancer specimens confirmed the strong association (chi square test, 

p=0.0005) of c-myc and HIF-1α expression levels, as we found in our series.  

To find the potential link between c-myc and others prostate cancer markers, we analyzed the relationship with 

GSTP1, TKT, and ERG expression. As first result, we found that high c-myc levels were significantly associated 

with low GSTP1 expression (chi square test, p=0.01). Figure 2 showed that samples with low GSTP1 expression 

displayed higher c-myc mRNA levels (28.379.475 mean value ± 1.063.536) than samples with high GSTP1 score 

(22.089.901 mean value ± 1.061.399) (t-test, p<0.0001). 

Then, increased c-myc expression was found to be associated with high TKT expression (chi square test, p<0.0001); 

moreover, high TKT levels were found in TCGA samples with low mean of GSTP1 mRNA (chi square test, 

p<0.0001), as shown for c-myc, and with ERG increased expression  (chi square test, p=0.02). Finally, samples with 

low GSTP1 expression displayed higher ERG mRNA levels (35.935.827 mean value ± 2.240.848) than samples with 

high GSTP1 score (18.811.341 mean value ± 2.236.344), as above shown for c-myc (t-test, p<0.0001). 

 



 9 

Discussion  

 

Prostate cancer is extremely heterogeneous, with a wide range of prognosis, and a consequent difficulty in 

discriminating between indolent and aggressive tumors. PSA serum level and Gleason grading on histological 

specimens are currently the classical prognostic factor, but they are often unable to predict a correct disease 

progression. Advances in molecular technologies analysed multiple pathways involved in prostate cancer, helping to 

identify new markers and modalities of treatment; however, simultaneous multiple markers analysis rather than the 

study of a single factor may have high robustness and the discovery of an hypothetic targetable axis may be of great 

use in clinical practice of prostate cancer.  

Myc was one of the top genes overexpressed in human prostate cancer tissues [19-26], and the activation of this 

proto-oncogene seems to be one of the earliest somatic molecular alterations in prostate cancer [1]. However, 

several data in literature showed that c-myc is essential not only for tumor initiation but also for progression and 

tumor maintenance [ 

27-33].  

Even if c-myc expression is alterated in ~70% of human tumors, the mechanism responsible for it is still largely 

unclear in each cancer type [34] as well as the c-myc target genes in prostate tumors are also unknown. In this work 

we focused on several genes in order to have a better identification of c-myc target genes and a comprehensive 

knowledge of the c-myc-related tumorigenesis for the development of new therapeutic strategies.  

Overexpression of c-myc enhances and synergizes with HIF-1 α stabilization and accumulation in hypoxic 

microenvironment in order to promote cell proliferation [35]. Hypoxia and the adaptive changes low oxygen-

induced have been involved in genetic instability [36-37] and increase of mutations frequency [38]. 

The present study started with the investigation of c-myc and HIF-1α expression level in our seventy-two prostate 

cancer samples, confirming their strong associations in oncogenic conditions. Moreover, further analysis on a cohort 

of 497 prostate cancer patients from the TCGA database confirmed our findings on a larger population and also 

using a different transcriptome-based technology, such as Illumina HiSeq quantification.   

Myc is known to directly and indirectly regulate the transcription of numerous genes and pathways; GSTP1, TKT, 

and ERG are important players in prostate cancer, but the way of their interactions is not yet clear as well as their 



 10 

relationship with c-myc. Our study suggested the notion of a putative axis, involving c-myc; HIF-1α; GSTP1, TKT, 

ERG, which should represent a target in prostate cancer. 

GSTP1, an important member of glutathione S-transferase (GST)s family, contributes to the regulation of cell 

proliferation and so is one of the most largely investigated tissue biomarker in several malignancies, including 

prostate cancer. The regulation of the GSTP1 expression level may help control the progress of prostate cancer, but 

it is not yet clear how GSTP1 plays its protective role. Wang et al [8] recently  reported that GSTP1 overexpression 

inhibits the viability and motility of prostate cancer in vitro and in vivo through targeting myc. TCGA data analysis 

in this study showed an activation of c-myc associated with GSTP1 downregulation; oncogenic myc deregulation 

may promote neoplastic transformation by distrupting GSTP1 tumor suppressor gene function. 

C-myc is a transcription factor able to regulate several genes [39-41] and its deregulation in cancer commonly 

involves different signaling pathways [42]. Metabolic reprogramming has recently been recognized as a hallmark of 

cancer [43], and deregulated in several tumours [44]. Silencing of TKT induced cell cycle arrest as well as 

overexpression correlated with poor prognosis in breast cancer patients [9], suggesting that TKT could be 

coordinately modulated as part of a central metabolic reprogramming.  

In this view, we focused our attention on TKT in order to investigate for the first time its role to achieve a fully 

malignant prostate phenotype and the putative regulation by c-myc. Our analysis of TCGA samples showed an 

association between TKT expression and c-myc, suggesting that myc deregulation in prostate cancer may increase 

TKT levels while distrupting GSTP1 protective function, as demonstrated by high TKT levels in TCGA samples 

with low GSTP1 expression. 

The ERG oncogene is activated in more than 50% of prostate cancer cases, generally through a gene fusion [45], and 

much attention has been recently focused on it [46-47]. In the current study we looked into the possibility that ERG 

could be involved in metabolic reprogramming in prostate cancer along with GSTP1 downregulation and TKT 

activation, as suggested by the association we found between low GSTP1 expression and high ERG and TKT mRNA 

levels.  

In conclusion, our findings suggested that the dysregulated expression of c-myc in prostate cancer could also 

synergize with other genes, such as HIF-1α; GSTP1, TKT, ERG (Figure 3) and the balance among these factors in 

turn would induce cellular proliferation and tumorigenesis; the potential of this axis as diagnostic marker and 

therapeutic target may have a clinical role in the pathogenesis, development and progression of prostate cancer.  
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Figure Legends 

Figure 1: Relationship between c-myc and HIF-1α mRNA expression (t-test, p=0.0008). 

Figure 2: Relationship between c-myc and GSTP1 mRNA expression (t-test, p <0.0001). 

Figure 3: Balance among dysregulated expression of c-myc and other genes, such as HIF-1α; GSTP1, TKT, ERG: a 

potential axis as diagnostic marker and therapeutic target in prostate cancer.  

 

 
 
 
 
 



Table 1. Correlations between c-myc and HIF-1α expression level and the main clinicopathological 

characteristics of our 72 prostate cancer patients. 

Characteristic  
c-myc expressiona 

p-valueb 
HIF-1α expressiona 

p-valueb 
Low High Low High 

Age       

  ≤67 years 17  24 0.09 21 20 0.81 

  >67 years 19  12  15 16  

TNM       

  T2 (T2a-T2b-T2c) 27 28 0.78 28 27 0.78 

  T3 (T3a-T3b) 9 8  8 9  

Gleason score       

  6 16 11 0.47 14 13 0.92 

  7 (3+4-4+3) 16 20  18 18  

  8,9 (4+4-5+3, 4+5) 4 5  4  5  

aValues are shown as n. bp-values are assessed by 2 test.  
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