66 research outputs found

    Mitochondrial biogenesis-associated factors underlie the magnitude of response to aerobic endurance training in rats

    Get PDF
    Trainability is important in elite sport and in recreational physical activity, and the wide range for response to training is largely dependent on genotype. In this study, we compare a newly developed rat model system selectively bred for low and high gain in running distance from aerobic training to test whether genetic segregation for trainability associates with differences in factors associated with mitochondrial biogenesis. Low response trainer (LRT) and high response trainer (HRT) rats from generation 11 of artificial selection were trained five times a week, 30 min per day for 3 months at 70 % VO2max to study the mitochondrial molecular background of trainability. As expected, we found significant differential for the gain in running distance between LRT and HRT groups as a result of training. However, the changes in VO2max, COX-4, redox homeostasis associated markers (reactive oxygen species (ROS)), silent mating-type information regulation 2 homolog (SIRT1), NAD+/NADH ratio, proteasome (R2 subunit), and mitochondrial network related proteins such as mitochondrial fission protein 1 (Fis1) and mitochondrial fusion protein (Mfn1) suggest that these markers are not strongly involved in the differences in trainability between LRT and HRT. On the other hand, according to our results, we discovered that differences in basal activity of AMP-activated protein kinase alpha (AMPKα) and differential changes in aerobic exercise-induced responses of citrate synthase, carbonylated protein, peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1-α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), and Lon protease limit trainability between these selected lines. From this, we conclude that mitochondrial biogenesis-associated factors adapt differently to aerobic exercise training in training sensitive and training resistant rats

    Down-regulation of 8-oxoguanine DNA glycosylase 1 expression in the airway epithelium ameliorates allergic lung inflammation

    Get PDF
    Allergic airway inflammation is characterized by increased expression of pro-inflammatory mediators, inflammatory cell infiltration, mucus hypersecretion, and airway hyperresponsiveness, in parallel with oxidative DNA base and strand damage, whose etiological role is not understood. Our goal was to establish the role of 8-oxoguanine (8-oxoG), a common oxidatively damaged base, and its repair by 8-oxoguanine DNA glycosylase 1 (Ogg1) in allergic airway inflammatory processes. Airway inflammation was induced by intranasally administered ragweed (Ambrosia artemisiifolia) pollen grain extract (RWPE) in sensitized BALB/c mice. We utilized siRNA technology to deplete Ogg1 from airway epithelium; 8-oxoG and DNA strand break levels were quantified by Comet assays. Inflammatory cell infiltration and epithelial methaplasia were determined histologically, mucus and cytokines levels biochemically and enhanced pause was used as the main index of airway hyperresponsiveness. Decreased Ogg1 expression and thereby 8-oxoG repair in the airway epithelium conveyed a lower inflammatory response after RWPE challenge of sensitized mice, as determined by expression of Th2 cytokines, eosinophilia, epithelial methaplasia, and airway hyperresponsiveness. In contrast, 8-oxoG repair in Ogg1-proficient airway epithelium was coupled to an increase in DNA single-strand break (SSB) levels and exacerbation of allergen challenge-dependent inflammation. Decreased expression of the Nei-like glycosylases Neil1 and Neil2 that preferentially excise ring-opened purines and 5-hydroxyuracil, respectively, did not alter the above parameters of allergic immune responses to RWPE. These results show that DNA SSBs formed during Ogg1-mediated repair of 8-oxoG augment antigen-driven allergic immune responses. A transient modulation of OGG1 expression/activity in airway epithelial cells could have clinical benefits

    Eating habits modulate short term memory and epigenetical regulation of brain derived neurotrophic factor in hippocampus of low- and high running capacity rats

    Get PDF
    Exercise capacity and dietary restriction (DR) are linked to improved quality of life, including enhanced brain function and neuro-protection. Brain derived neurotrophic factor (BDNF) is one of the key proteins involved in the beneficial effects of exercise on brain. Low capacity runner (LCR) and high capacity runner (HCR) rats were subjected to DR in order to investigate the regulation of BDNF. HCR-DR rats out-performed other groups in a passive avoidance test. BDNF content increased significantly in the hippocampus of HCR-DR groups compared to control groups (p<0.05). The acetylation of H3 increased significantly only in the LCR-DR group. However, chip-assay revealed that the specific binding between acetylated histone H3 and BNDF promoter was increased in both LCR-DR and HCR-DR groups. In spite of these increases in binding, at the transcriptional level only, the LCR-DR group showed an increase in BDNF mRNA content. Additionally, DR also induced the activity of cAMP response element-binding protein (CREB), while the content of SIRT1 was not altered. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) was elevated in HCR-DR groups. But, based on the levels of nuclear respiratory factor-1 and cytocrome c oxidase, it appears that DR did not cause mitochondrial biogenesis. The data suggest that DR-mediated induction of BDNF levels includes chromatin remodeling. Moreover, DR does not induce mitochondrial biogenesis in the hippocampus of LCR/HCR rats. DR results in different responses to a passive avoidance test, and BDNF regulation in LCR and HCR rats

    8-Oxoguanine DNA Glycosylase-1 Augments Proinflammatory Gene Expression by Facilitating the Recruitment of Site-Specific Transcription Factors

    Get PDF
    Among the insidious DNA base lesions, 8-oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant, a lesion that arises through the attack by reactive oxygen species on guanine, especially when located in cis-regulatory elements. 8-oxoG is repaired by the 8-oxoguanine glycosylase 1 (OGG1)-initiated DNA base excision repair (BER) pathway. Here we investigated whether 8-oxoG repair by OGG1 in promoter regions is compatible with a prompt gene expression and a host innate immune response. For this purpose, we utilized a mouse model of airway inflammation, supplemented with cell cultures, chromatin immunoprecipitation, siRNA knockdown, real-time PCR, Comet and reporter transcription assays. Our data show that exposure of cells to tumor necrosis factor alpha (TNF-α) altered cellular redox, increased the 8-oxoG level in DNA, recruited OGG1 to promoter sequences and transiently inhibited BER of 8-oxoG. Promoter-associated OGG1 then enhanced NF-êB/RelA binding to cis-elements and facilitated recruitment of Specificity Protein 1 (SP1), transcription initiation factor II-D (TFIID), and phospho-RNA polymerase II, resulting in the rapid expression of chemokines/cytokines and inflammatory cell accumulation in mouse airways. siRNA depletion of OGG1 or prevention of guanine oxidation significantly decreased TNF-α-induced inflammatory responses. Together, these results show that non-productive binding of OGG1 to 8-oxoG in promoter sequences could be an epigenetic mechanism to modulate gene expression for a prompt innate immune response

    Ragweed Subpollen Particles of Respirable Size Activate Human Dendritic Cells

    Get PDF
    Ragweed (Ambrosia artemisiifolia) pollen grains, which are generally considered too large to reach the lower respiratory tract, release subpollen particles (SPPs) of respirable size upon hydration. These SPPs contain allergenic proteins and functional NAD(P)H oxidases. In this study, we examined whether exposure to SPPs initiates the activation of human monocyte-derived dendritic cells (moDCs). We found that treatment with freshly isolated ragweed SPPs increased the intracellular levels of reactive oxygen species (ROS) in moDCs. Phagocytosis of SPPs by moDCs, as demonstrated by confocal laser-scanning microscopy, led to an up-regulation of the cell surface expression of CD40, CD80, CD86, and HLA-DQ and an increase in the production of IL-6, TNF-a, IL-8, and IL-10. Furthermore, SPP-treated moDCs had an increased capacity to stimulate the proliferation of naı¨ve T cells. Co-culture of SPP-treated moDCs with allogeneic CD3+ pan-T cells resulted in increased secretion of IFN-c and IL-17 by T cells of both allergic and non-allergic subjects, but induced the production of IL- 4 exclusively from the T cells of allergic individuals. Addition of exogenous NADPH further increased, while heat-inactivation or pre-treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, strongly diminished, the ability of SPPs to induce phenotypic and functional changes in moDCs, indicating that these processes were mediated, at least partly, by the intrinsic NAD(P)H oxidase activity of SPPs. Collectively, our data suggest that inhaled ragweed SPPs are fully capable of activating dendritic cells (DCs) in the airways and SPPs’ NAD(P)H oxidase activity is involved in initiation of adaptive immune responses against innocuous pollen proteins

    8-Oxoguanine DNA glycosylase-1 links DNA repair to cellular signaling via the activation of the small GTPase Rac1

    Get PDF
    8-Oxo-7,8-dihydroguanine (8-oxoG) is one of the most abundant DNA base lesions induced by reactive oxygen species (ROS). Accumulation of 8-oxoG in the mammalian genome is considered a marker of oxidative stress, to be causally linked to inflammation, and is thought to contribute to aging processes and various aging-related diseases. Unexpectedly, mice that lack 8-oxoguanine DNA glycosylase-1 (OGG1) activity and accumulate 8-oxoG in their genome have a normal phenotype and longevity; in fact, they show increased resistance to both inflammation and oxidative stress. OGG1 excises and generates free 8-oxoG base during DNA base-excision repair (BER) processes. In the present study, we report that in the presence of the 8-oxoG base, OGG1 physically interacts with guanine nucleotide-free and GDP-bound Rac1 protein. This interaction results in rapid GDP→GTP, but not GTP→GDP, exchange in vitro. Importantly, a rise in the intracellular 8-oxoG base levels increases the proportion of GTP-bound Rac1. In turn Rac1-GTP mediates an increase in ROS levels via nuclear membrane-associated NADPH oxidase type 4. These results show a novel mechanism by which OGG1 in complex with 8-oxoG is linked to redox signaling and cellular responses
    corecore