27 research outputs found

    Regulatory B Cells: Role in Type 1 Diabetes

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordRegulatory B cells (Bregs) have an anti-inflammatory role and can suppress autoimmunity, by employing both cytokine secretion and cell-contact mediated mechanisms. Numerous Breg subsets have been described and have overlapping phenotypes in terms of their immune expression markers or cytokine production. A hallmark feature of Bregs is the secretion of IL-10, although IL-35 and TGFβ−producing B cells have also been identified. To date, few reports have identified an impaired frequency or function of Bregs in individuals with type 1 diabetes; thus our understanding of the role played by these Breg subsets in the pathogenesis of this condition is limited. In this review we will focus on how regulatory B cells are altered in the development of type 1 diabetes, highlighting both frequency and function and discuss both human and animal studies.Research EnglandMedical Research Council (MRC

    Activated but functionally impaired memory Tregs are expanded in slow progressors to type 1 diabetes

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordData availability: The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.Aims/hypothesis Slow progressors to type 1 diabetes are individuals positive for multiple pancreatic islet autoantibodies who have remained diabetes-free for at least 10 years; regulation of the autoimmune response is understudied in this group. Here, we profile CD4+ regulatory T cells (Tregs) in a small but well-characterised cohort of extreme slow progressors with a median age 43 (range 31–72 years), followed up for 18–32 years. Methods Peripheral blood samples were obtained from slow progressors (n = 8), age- and sex-matched to healthy donors. One participant in this study was identified with a raised HbA1c at the time of assessment and subsequently diagnosed with diabetes; this donor was individually evaluated in the analysis of the data. Peripheral blood mononuclear cells (PBMCs) were isolated, and to assess frequency, phenotype and function of Tregs in donors, multi-parameter flow cytometry and T cell suppression assays were performed. Unsupervised clustering analysis, using FlowSOM and CITRUS (cluster identification, characterization, and regression), was used to evaluate Treg phenotypes. Results Unsupervised clustering on memory CD4+ T cells from slow progressors showed an increased frequency of activated memory CD4+ Tregs, associated with increased expression of glucocorticoid-induced TNFR-related protein (GITR), compared with matched healthy donors. One participant with a raised HbA1c at the time of assessment had a different Treg profile compared with both slow progressors and matched controls. Functional assays demonstrated that Treg-mediated suppression of CD4+ effector T cells from slow progressors was significantly impaired, compared with healthy donors. However, effector CD4+ T cells from slow progressors were more responsive to Treg suppression compared with healthy donors, demonstrated by increased suppression of CD25 and CD134 expression on effector CD4+ T cells. Conclusions/interpretations We conclude that activated memory CD4+ Tregs from slow progressors are expanded and enriched for GITR expression, highlighting the need for further study of Treg heterogeneity in individuals at risk of developing type 1 diabetes.Diabetes UKJDR

    Peripheral proinsulin expression controls low-avidity proinsulin-reactive CD8 T Cells in type 1 diabetes

    Get PDF
    Low-avidity autoreactive CD8 T cells (CTLs) escape from thymic negative selection, and peripheral tolerance mechanisms are essential for their regulation. We report the role of proinsulin (PI) expression on the development and activation of insulin-specific CTLs in the NOD mouse model of type 1 diabetes. We studied insulin B-chain–specific CTL from different T-cell receptor transgenic mice (G9Cα−/−) expressing normal PI1 and PI2 or altered PI expression levels. In the absence of PI2 (Ins2−/−), CTL in pancreatic lymph nodes (PLNs) were more activated, and male G9Cα−/− mice developed T1D. Furthermore, when the insulin-specific CTLs developed in transgenic mice lacking their specific PI epitope, the CTLs demonstrated increased cytotoxicity and proliferation in vitro and in vivo in the PLNs after adoptive transfer into NOD recipients. Dendritic cell–stimulated proliferation of insulin-specific T cells was reduced in the presence of lymph node stromal cells (LNSCs) from NOD mice but not from mice lacking the PI epitope. Our study shows that LNSCs regulate CTL activation and suggests that exposure to PI in the periphery is very important in maintenance of tolerance of autoreactive T cells. This is relevant for human type 1 diabetes and has implications for the use of antigen-specific therapy in tolerance induction

    Re-programming immunosurveillance in persistent non-infectious ocular inflammation

    Get PDF
    Ocular function depends on a high level of anatomical integrity. This is threatened by inflammation, which alters the local tissue over short and long time-scales. Uveitis due to autoimmune disease, especially when it involves the retina, leads to persistent changes in how the eye interacts with the immune system. The normal pattern of immune surveillance, which for immune privileged tissues is limited, is re-programmed. Many cell types, that are not usually present in the eye, become detectable. There are changes in the tissue homeostasis and integrity. In both human disease and mouse models, in the most extreme cases, immunopathological findings consistent with development of ectopic lymphoid-like structures and disrupted angiogenesis accompany severely impaired eye function. Understanding how the ocular environment is shaped by persistent inflammation is crucial to developing novel approaches to treatment

    Re-programming immunosurveillance in persistent non-infectious ocular inflammation

    Get PDF
    Ocular function depends on a high level of anatomical integrity. This is threatened by inflammation, which alters the local tissue over short and long time-scales. Uveitis due to autoimmune disease, especially when it involves the retina, leads to persistent changes in how the eye interacts with the immune system. The normal pattern of immune surveillance, which for immune privileged tissues is limited, is re-programmed. Many cell types, that are not usually present in the eye, become detectable. There are changes in the tissue homeostasis and integrity. In both human disease and mouse models, in the most extreme cases, immunopathological findings consistent with development of ectopic lymphoid-like structures and disrupted angiogenesis accompany severely impaired eye function. Understanding how the ocular environment is shaped by persistent inflammation is crucial to developing novel approaches to treatment

    The role of B lymphocytes in type 1 diabetes

    No full text
    While autoreactive T cells are known to induce β-cell death in type 1 diabetes (T1D), self-reactive B cells also play an important role in the pathogenesis of T1D. Studies have shown that individuals living with T1D have an increased frequency of self-reactive B cells that escape from the bone marrow and populate peripheral organs, become activated, and participate in disease. These failed tolerance mechanisms may be attributed to genetic risk alleles that are associated with the development of T1D. Once in the periphery, these self-reactive B cells act as important antigen-presenting cells to autoreactive T cells and produce autoantibodies that are used to predict individuals at risk for or diagnosed with T1D. Here, we discuss the evidence that B cells are important in the pathogenesis of T1D, how these cells escape normal tolerance mechanisms, their role in disease progression, and how targeting these cells and/or monitoring them as biomarkers for response to therapy will be of clinical benefit

    TNF-mediated macrophage activation in the target organ is critical for clinical manifestation of uveitis

    No full text
    Clinically available anti-tumour necrosis factor (TNF) biologics, which inhibit both soluble (sTNF) and transmembrane forms (tmTNF) of TNF, eliminating all TNF signalling, have successfully treated autoimmune diseases including uveitis. These have potentially serious side effects such as reactivation of latent Mycobacterium tuberculosis and, therefore, more specific inhibition of TNF signalling pathways may maintain clinical efficacy while reducing adverse effects. To determine the effects of specific pharmacological inhibition of sTNF on macrophage activation and migration, we used a mouse model of uveitis (experimental autoimmune uveoretinitis; EAU). We show that selective inhibition of sTNF is sufficient to suppress EAU by limiting inflammatory CD11b(+) macrophages and CD4(+) T cell migration into the eye. However, inhibition of both sTNF and tmTNF is required to inhibit interferon-γ-induced chemokine receptor 2, CD40, major histocompatibility complex class II and nitric oxide (NO) up-regulation, and signalling via tmTNF is sufficient to mediate tissue damage. In confirmation, intravitreal inhibition of sTNF alone did not suppress disease, and inflammatory cells that migrated into the eye were activated, generating NO, thus causing structural damage to the retina. In contrast, intravitreal inhibition of both sTNF and tmTNF suppressed macrophage activation and therefore disease. We conclude that sTNF is required for inflammatory cell infiltration into target tissue, but at the tissue site inhibition of both sTNF and tmTNF is required to inhibit macrophage activation and to protect from tissue damage

    Tissue-Resident Exhausted Effector Memory CD8+ T Cells Accumulate in the Retina during Chronic Experimental Autoimmune Uveoretinitis

    No full text
    Experimental autoimmune uveoretinitis is a model for noninfectious posterior segment intraocular inflammation in humans. Although this disease is CD4(+) T cell dependent, in the persistent phase of disease CD8(+) T cells accumulate. We show that these are effector memory CD8(+) T cells that differ from their splenic counterparts with respect to surface expression of CD69, CD103, and Ly6C. These retinal effector memory CD8(+) T cells have limited cytotoxic effector function, are impaired in their ability to proliferate in response to Ag-specific stimulation, and upregulate programmed death 1 receptor. Treatment with fingolimod (FTY720) during the late phase of disease revealed that retinal CD8(+) T cells were tissue resident. Despite signs of exhaustion, these cells were functional, as their depletion resulted in an expansion of retinal CD4(+) T cells and CD11b(+) macrophages. These results demonstrate that, during chronic autoimmune inflammation, exhausted CD8(+) T cells become established in the local tissue. They are phenotypically distinct from peripheral CD8(+) T cells and provide local signals within the tissue by expression of inhibitory receptors such as programmed death 1 that limit persistent inflammation

    Tissue-Resident Exhausted Effector Memory CD8 +

    No full text
    Experimental autoimmune uveoretinitis is a model for noninfectious posterior segment intraocular inflammation in humans. Although this disease is CD4(+) T cell dependent, in the persistent phase of disease CD8(+) T cells accumulate. We show that these are effector memory CD8(+) T cells that differ from their splenic counterparts with respect to surface expression of CD69, CD103, and Ly6C. These retinal effector memory CD8(+) T cells have limited cytotoxic effector function, are impaired in their ability to proliferate in response to Ag-specific stimulation, and upregulate programmed death 1 receptor. Treatment with fingolimod (FTY720) during the late phase of disease revealed that retinal CD8(+) T cells were tissue resident. Despite signs of exhaustion, these cells were functional, as their depletion resulted in an expansion of retinal CD4(+) T cells and CD11b(+) macrophages. These results demonstrate that, during chronic autoimmune inflammation, exhausted CD8(+) T cells become established in the local tissue. They are phenotypically distinct from peripheral CD8(+) T cells and provide local signals within the tissue by expression of inhibitory receptors such as programmed death 1 that limit persistent inflammation
    corecore