64 research outputs found

    Two-Pulse Propagation in Media with Quantum-Mixed Ground States

    Full text link
    We examine fully coherent two-pulse propagation in a lambda-type medium, under two-photon resonance conditions and including inhomogeneous broadening. We examine both the effects of short pulse preparation and the effects of medium preparation. We contrast cases in which the two pulses have matched envelopes or not, and contrast cases in which ground state coherence is present or not. We find that an extended interpretation of the Area Theorem for single-pulse self-induced transparency (SIT) is able to unify two-pulse propagation scenarios, including some aspects of electromagnetically-induced transparency (EIT) and stimulated Raman scattering (SRS). We present numerical solutions of both three-level and adiabatically reduced two-level density matrix equations and Maxwell's equations, and show that many features of the solutions are quickly interpreted with the aid of analytic solutions that we also provide for restricted cases of pulse shapes and preparation of the medium. In the limit of large one-photon detuning, we show that the two-level equations commonly used are not reliable for pulse Areas in the 2Ď€\pi range, which allows puzzling features of previous numerical work to be understood.Comment: 28 pages, 7 figures. Replaced with version accepted in PR

    Existence of superposition solutions for pulse propagation in nonlinear resonant media

    Get PDF
    Existence of self-similar, superposed pulse-train solutions of the nonlinear, coupled Maxwell-Schr\"odinger equations, with the frequencies controlled by the oscillator strengths of the transitions, is established. Some of these excitations are specific to the resonant media, with energy levels in the configurations of Λ\Lambda and NN and arise because of the interference effects of cnoidal waves, as evidenced from some recently discovered identities involving the Jacobian elliptic functions. Interestingly, these excitations also admit a dual interpretation as single pulse-trains, with widely different amplitudes, which can lead to substantially different field intensities and population densities in different atomic levels.Comment: 11 Pages, 6 Figures, presentation changed and 3 figures adde

    Matched Pulse Propagation in a Three-Level System

    Full text link
    The B\"{a}cklund transformation for the three-level Maxwell-Bloch equation is presented in the matrix potential formalism. By applying the B\"{a}cklund transformation to a constant electric field background, we obtain a general solution for matched pulses (a pair of solitary waves) which can emit or absorb a light velocity solitary pulse but otherwise propagate with their shapes invariant. In the special case, this solution describes a steady state pulse without emission or absorption, and becomes the matched pulse solution recently obtained by Hioe and Grobe. A nonlinear superposition rule is derived from the B\"{a}cklund transformation and used for the explicit construction of two solitons as well as nonabelian breathers. Various new features of these solutions are addressed. In particular, we analyze in detail the scattering of "invertons", a specific pair of different wavelength solitons one of which moving with the velocity of light. Unlike the usual case of soliton scattering, the broader inverton changes its sign through the scattering. Surprisingly, the light velocity inverton receives time advance through the scattering thereby moving faster than light, which however does not violate causality.Comment: 20 pages, Latex, 12 eps figure files some comments and references are added. postscript file with 12 figures can be obtained at http://photon.kyunghee.ac.kr/~qhpark

    Magnetothermal instability in laser plasmas including hydrodynamic effects

    Get PDF
    The impact of both density gradients and hydrodynamics on the evolution of the field compressing magnetothermal instability is considered [J. J. Bissell et al., Phys. Rev. Lett. 105, 175001 (2010)]. Hydrodynamic motion is found to have a limited effect on overall growth-rates; however, density gradients are shown to introduce an additional source term corresponding to a generalised description of the field generating thermal instability [D. Tidman and R. Shanny, Phys. Fluids 17, 1207 (1974)]. The field compressing and field generating source terms are contrasted, and the former is found to represent either the primary or sole instability mechanism for a range of conditions, especially those with Hall parameter v > 101. The generalised theory is compared to numerical simulation in the context of a recent nano-second gas-jet experiment [D. H. Froula et al., Phys. Rev. Lett. 98, 135001 (2007)] and shown to be in good agreement: exhibiting peak growth-rates and wavelengths of order 10 ns1 and 50 lm, respectively. The instability’s relevance to other experimental conditions, including those in inertial confinement fusion (I.C.F.) hohlraums, is also discussed
    • …
    corecore