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The impact of both density gradients and hydrodynamics on the evolution of the field compressing

magnetothermal instability is considered [J. J. Bissell et al., Phys. Rev. Lett. 105, 175001 (2010)].

Hydrodynamic motion is found to have a limited effect on overall growth-rates; however, density

gradients are shown to introduce an additional source term corresponding to a generalised

description of the field generating thermal instability [D. Tidman and R. Shanny, Phys. Fluids 17,

1207 (1974)]. The field compressing and field generating source terms are contrasted, and the former

is found to represent either the primary or sole instability mechanism for a range of conditions,

especially those with Hall parameter v > 10�1. The generalised theory is compared to numerical

simulation in the context of a recent nano-second gas-jet experiment [D. H. Froula et al., Phys. Rev.

Lett. 98, 135001 (2007)] and shown to be in good agreement: exhibiting peak growth-rates and

wavelengths of order 10 ns1 and 50 lm, respectively. The instability’s relevance to other

experimental conditions, including those in inertial confinement fusion (I.C.F.) hohlraums, is also

discussed. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4718639]

I. INTRODUCTION

The connexion between magnetic field dynamics and

electron transport in laser-plasmas is both reciprocal and pro-

found. Such interdependence has long been accounted for in

classical transport theory, where, for instance, magnetic field

can both suppress heat-flow and be carried with it.1,2 Grow-

ing interest in the role of magnetic fields in laser-plasmas has

emphasised the importance of characterising such interplay,

particularly in the contexts of inertial confinement fusion

(I.C.F.)3–5 and magneto-inertial fusion (M.I.F.)6–8 schemes

but also for more general experimental topics, such as the

suppression of heat transport,9 the control of density chan-

nels,10 and the evolution of plasma bubbles.11–13

Recently, we demonstrated that classical (Braginskii)1

transport processes can lead to a new kind of instability in

laser-plasmas—the field compressing magnetothermal insta-
bility—when heat flows perpendicular to a magnetic field

B.14 Titled in accordance with its principal features, the mag-

netothermal instability compresses magnetic field, concen-

trates the flow of heat, and enhances thermal energy

spreading (see Figure 1) and may be important when symme-

try of thermal transport is a key concern, such as those con-

texts referred to above.3–13

The magnetothermal instability is driven by collisional

transport phenomena alone and therefore of particular interest

because it acts to destabilise plasmas in the absence of more

usual mechanisms. In particular, unstable growth results from

coupling between (i) the Nernst effect, that is, advection of B

with the diffusive heat-flow q? at velocity vN � 2q?=3Pe

(where Pe is the electron pressure)2 and (ii) the Righi-Leduc

heat-flow, the thermal flux deflected by fields acting on nega-

tively charged, heat-carrying electrons.1 Neither density gra-

dients (which give rise to the field generating thermal

instability),15–20 large anisotropies (responsible for other

heat-flux and Weibel-like instabilities),21–24 nor hydrody-

namic flow (necessary for interchange instabilities, such

as the Rayleigh-Taylor instability and its analogues)25–27 are

required.

In this paper, we generalise the original theory of the

magnetothermal instability14 to include effects arising from

both density gradients and hydrodynamics (Secs. II and III),

a natural prerequisite to understanding how the instability

operates under conditions for which hydrodynamic rates

exceed those associated with instability. Including gradients

in the electron number density ne (i.e., rne 6¼ 0) alongside

those in the electron temperature Te means that the general-

ised model can account for effects arising from rTe �rne

magnetic field generation.28 This is significant because cou-

pling between the rTe �rne effect and the Righi-Leduc

heat-flow has long been known to drive a field generating
thermal instability.15–19 Nearly, all existing studies of the lat-

ter assume an unmagnetised plasma, meaning that our dis-

cussion also represents a generalised description of how the

field generating instability functions in the presence of exist-

ing fields: indeed, only Fruchtman and Strauss20 seem to

have considered magnetised conditions; nevertheless, the ab-

sence of field gradients, damping terms (such as thermal dif-

fusion), and important advective effects from their model

render its verisimilitude somewhat questionable. The theory

presented here is thus essential for understanding how the

mechanisms behind the magnetothermal instability and the

field generating thermal instability interact (Sec. V).

We compare the generalised theory of the magnetother-

mal instability to numerical simulation in Sec. IV using pa-

rameters similar to those of a recent nano-second gas-jet

experiment,9 a context in which we find characteristic

growth-rates and wavelengths of order 10 ns1 and 50 lm,

respectively. Finally, in Sec. VI, we describe an approximate

method for calculating peak growth-rates and wave-numbers,
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which we use to assess the relevance of the instability to vari-

ous experimental conditions (Sec. VII).

II. BASIC EQUATIONS AND MAIN ASSUMPTIONS

We account for hydrodynamics using a single fluid

model, neglecting electron inertia in the momentum equation

and ion pressure Pi compared to electron pressure Pe ¼ neTe

(with Te in energy units). In our geometry, gradients and

fluxes are taken to be perpendicular to the magnetic field B,

so that for scalar quantities f and vector quantities A we have

B � rf ¼ B � A ¼ 0. This means that magnetic tension does

not contribute to magnetohydrodynamic forces, i.e.,

ðB � rÞB ¼ 0. The principal governing equations, the conti-

nuity equation (1), momentum equation (2), Faraday’s Law

(3), and the thermal energy continuity equation (4) may thus

be written

@ne

@t
þr � ðneCÞ ¼ 0; (1)

qi

@C

@t
þ ðC � rÞC

� �
¼ �r B2

2l0

þ Pe

� �
; (2)

@B

@t
¼ �r� E; and (3)

3

2
ne

@Te

@t
þ C � rTe

� �
þ neTer � Cþr � q� E0 � j ¼ _U ;

(4)

where E0 ¼ Eþ C� B is defined by the electric field E and

bulk flow velocity C, while q is the total heat-flow, qi ¼ nimi

is the ion mass density (with mass mi and number density ni),

and _U is the rate of change of energy due to external

heating. Ampère’s Law is used to express the current as

j ¼ r� B=l0. The electric field and heat-flow are calculated

using Braginskii’s generalised Ohm’s Law and heat-flow

equation, respectively1,29–31

eneE0 ¼ �rPe þ j� Bþ me

ecBsT
a¼

c � j� neb¼
c � rTe (5)

and q ¼ � necBsTTe

me
j¼

c � rTe � w0
¼
� j Te

e
: (6)

Here cB ¼ 3
ffiffiffi
p
p

=4 is a dimensionless constant and e is

the electronic charge; while the thermal collision time sT ¼
4pv3

T =ni½Ze2=�0me�2log Kei is defined by the thermal velocity

vT ¼ ð2Te=meÞ1=2
, with me as the electron mass, and the Cou-

lomb logarithm log Kei � 8. This allows us to further define

an electron thermal mean-free-path kT ¼ vTsT . The transport

coefficients—the resistivity a¼
c, the thermal conductivity j¼

c,

and the thermo-electric tensors b
¼

c and w
¼
0—are dimensionless

functions of the atomic number Z and Hall parameter

v ¼ cBxLsT , where xL ¼ ejBj=me is the electron Larmor

frequency.

A unit vector in the direction of the magnetic field b ¼
B=jBj provides a unique reference in magnetised plasmas

and transport may be split into components parallel and per-

pendicular to field lines. Indeed, for a general transport

coefficient
¼
g and driving force s, in our geometry

(B � rf ¼ B � A ¼ 0) we have
¼
g � s ¼ g?s6g^b� s, where

the components g? and g^ may be expressed as rational

polynomial fits with v for different values of Z,30,31 and the

sign of the last term is only negative for the conductivity

a¼
c. When data are presented here, we assume the Lorentz

approximation, i.e., polynomial fits with Z !1. Note

that w
¼
0 accounts for the relationship q � qe � ð5TeÞ=ð2eÞj

between the total heat-flow q and the intrinsic heat-flow

qe,32 so that w
¼
0 ¼ wcþð5=2ÞI¼, where w

¼
c ¼ bc and I¼ is the

identity tensor. Combining Eqs. (3) and (5), to form the

induction equation, and substituting for q and E in the

energy continuity equation (4) thus provides a complete

description of the principal quantities Te;B; ne, and C.

The handling of terms relating to collisional transport is

made more amenable by associating diffusive and advective

effects with dimensionless coefficients symbolised by the let-

ters D and A, respectively. More specifically, we employ the

following coefficients defined in Table I and motivated by

Bissell:33 DT , the thermal diffusion coefficient; DR, the resis-

tive diffusion coefficient; AN , the “Nernst advection coef-

ficient;” and AE, the “Ettingshausen advection coefficient.”

Two further dimensionless coefficients defined in Table I are

also used: Cj, the Righi-Leduc heat-flow coefficient; and

CG, a coefficient associated with rTe �rne field genera-

tion. This notation permits the “tracking” of key transport

phenomena and aids economy of expression in the

analysis.33

Before proceeding with the linear perturbation theory,

note that in what follows we assume the square of the sound

speed vs to greatly exceed that of the Alfvén speed vA, i.e.,

v2
s=v

2
A � 1, where v2

A ¼ ðB2=qil0Þ and v2
s ¼ ðccPe=qiÞ, with

FIG. 1. Magnetothermal instability active in CTCþ simulation of the

experiment by Froula et al.9 (see Sec. IV). Here an homogeneous plasma

magnetised by an 8 T field is heated for 300 ps; a 1% perturbation is then

added to the field such that B! Bþ dB sinð8hÞ, where tan h ¼ ðy=xÞ, and

the plasma heated for a further 160 ps, that is, 460 ps total.
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cc ¼ 5=3 as the ratio of specific heats. In essence, such

an assumption is equivalent to demanding that the thermal

pressure Pe ¼ neTe is much greater than the magnetic pres-

sure PB ¼ B2=2l0, that is, b� 1 or

b ¼ Pe

PB
¼ 2

cc

v2
s

v2
A

¼ c2
BK2

v2
� 1; where K ¼ kT

d
;

with d ¼ c

xpe
and xpe ¼

nee2

�0me

� �1=2

(7)

as the collisionless-skin-depth and plasma frequency, respec-

tively, and c as the speed of light in vacuo. In addition, we

employ the inequality K� 1, which holds for relatively hot,

low density plasmas (see Eq. (36)), combining it with condi-

tion (7) to form the stronger assumption

K2 � maxf1; v2g: (8)

This inequality is key to simplifying our description and

permits the neglect of a number of somewhat awkward terms

in the analysis: first, non-linear terms arising from Ohmic

heating; second, in combination with the local approximation

(see Sec. III), terms in b? and a^; third, contributions from

the Hall field j� B when compared to those due to field gen-

eration by rTe �rne; fourth, heat-flow advection associ-

ated with the current (e.g., terms in w?); and fifth (in effect),

magnetic pressure compared to thermal pressure in the

momentum equation (2).

III. LINEAR PERTURBATION THEORY

We now consider the stability of Eqs. (1)–(4) in a Carte-

sian ðx; y; zÞ geometry with B ¼ Bẑ, where ẑ is a unit vector

in the z-direction and the parameter rB ¼ B=jBj may be used

to describe whether the field is aligned parallel (rB ¼ 1) or

antiparallel (rB ¼ �1) to the z-axis. In zeroth-order, we

assume solutions for the principal quantities Te ¼ T0ðx; tÞ,
B ¼ B0ðx; tÞ, ne ¼ n0ðx; tÞ, and C ¼ C0ðx; tÞx̂, where x̂ is a

unit vector in the x-direction, and define length scales lf

through the relation

1

lf
¼ 1

f0

@f0

@x
; where f0 2 fT0;B0; n0;C0g; (9)

a form permitting negative values. To the zeroth-order solu-

tions we add wavelike perturbations with wavevector k and

frequency x, propagating at an angle h to the x-axis of the

system such that k ¼ k cos hx̂ þ k sin hŷ, where k ¼ jkj and

y is a unit vector in the y-direction. Hence,

Te ¼ T0 þ dT; dT ¼ dT0exp½iðk � r� xtÞ�; (10a)

B ¼ B0 þ dB; dB ¼ dB0exp½iðk � r� xtÞ�; (10b)

ne ¼ n0 þ dn; dn ¼ dn0exp½iðk � r� xtÞ�; (10c)

C ¼ C0x̂ þ dCk̂; dC ¼ dC0exp½iðk � r� xtÞ�; (10d)

where dT0, dB0, dn0, and dC0 are complex, r ¼ xx̂ þ yŷ and

k̂ ¼ k=k. We assume the local conditions jklf j � 1 and

jrl�1
f j. 1=l2

f throughout.

For convenience, we further define a dimensionless fre-

quency X ¼ xsT and dimensionless wave-number K ¼ kkT ,

alongside a characteristic dimensionless velocity

V ¼ ðX=KÞ � CH; where CH ¼ ðC0=vTÞ cos h (11)

is the component of the bulk flow moving parallel to the per-

turbation (i.e., Doppler shift) normalised to the thermal ve-

locity vT . Finally, we employ the dimensionless sound speed

Vs ¼ vs=vT and length scales Lf ¼ lf=kT . This additional

notation is summarised in Table II.

Thus—after substituting the perturbed forms of Eq.

(10a) into Eqs. (1)–(4), subtracting the zeroth-order solu-

tions and neglecting appropriate terms—to first-order we

obtain a quartic dispersion relation in X and a sextic in K,

that is,33

V2

�
V2þ½ðiKDT�VBÞþ iKDR�Vþ

�
ðiKDT�VBÞiKDRþ

1

4
SG�

1

4
SPiKþ1

4
SEK2

��
�V2

s

�
V2þ

�
3

5
ðiKDT�VBÞþ iKDR

�
V

þ
�

3

5
ðiKDT�VBÞiKDRþ

3

20
KGSG�

3

20
SPiKþ 3

20
SEK2

��
¼0; (12)

TABLE I. Dimensionless notation for effects arising from both collisional

transport and the rTe �rne mechanism.33 Note that K ¼ kT=d is the ratio

of the mean-free-path kT to the collisionless-skin-depth d ¼ c=xpe, where c
is the speed of light in vacuo and xpe ¼ ðnee2=�0meÞ1=2

is the plasma

frequency.

Dimensionless coefficient Definition

Thermal diffusion DT ¼
cB

3
j?

Resistive diffusion DR¼
a?

cBK2

Nernst advection AN ¼
cB

2v
b^

Ettingshausen advection AE¼
2vw^
3cBK2

Righi-Leduc heat-flow Cj¼
cB

3
v
@j^
@v

B -field generation by rTe �rne CG¼
cB

2v
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where the dimensionless velocity VB, source terms SG; SP,

and SE, and parameters KG and KB are defined

SG ¼ 4
CjCG

LTLn
sin2h; SP ¼ 4AN

rB

LT
Cj sin h; (13)

SE ¼ 4ANAE; VB ¼
SPLT

4ANLB
KB; (14)

KG ¼ 1þ Ln

LT

� �
and KB ¼ 1� LB

Ln

� �
: (15)

The quartic nature of the dispersion relation precludes

meaningful direct solution, and for this reason it is expedient

to define two limiting regimes before discussing the meaning

of the various terms. Indeed, writing Eq. (12) as we have

done, an expression constituting two terms in curly brackets

of similar magnitude, suggests two limits for which approxi-

mate solutions may be found. More specifically, by defining

both a classical transport (CT) and an hydrodynamical (HD)

regime (cf. Hirao and Ogasawara),19 i.e.,

Classical transport ðCTÞ regime : V2 � V2
s (16)

and Hydrodynamical ðHDÞ regime : V2 � V2
s ; (16b)

the quartic dispersion relation may be approximated as a

quadratic comprising either the first (CT regime) or second

(HD regime) term in curly brackets and solved accordingly

(see Figures 2 and 3). These regimes provide a more natural

context in which to discuss the generalised theory of the

magnetothermal instability and shall be considered further in

the following subsections. Using the subscripts “CT” and

“HD” to refer to solutions for X in the classical transport and

hydrodynamical limits respectively, the dispersion relations

relevant to each are

XCT ¼
1

2
ðVB þ 2CHÞK � ðDT þ DRÞiK26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðDT � DRÞiK2 � VBK�2 � SGK2 þ SPiK3 � SEK4

q� �
and (17)

XHD ¼
1

2

 
3

5
VB þ 2CH

!
K � 3

5
DT þ DR

� �
iK26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

5
DT � DR

� �
iK2 � 3

5
VBK

� �2

� 3

5
KGSGK2 þ 3

5
SPiK3 � 3

5
SEK4

s8<
:

9=
;:
(18)

A. CT regime

The positive root of the CT dispersion relation (Eq.

(17)) yields unstable solutions =fXCTg > 0 for real wave-

numbers up to a cut-off KCT defined by

K2
CT ¼

�
S2

P

4
1þ DRLT

ANLB
KB

� �
1� DTLT

ANLB
KB

� �

� 1

DT þ DR

� �2

þ SG

��
1

4DTDR � SE

�
: (19)

In the absence of density gradients and hydrodynamics

(Ln !1; SG ¼ 0 and KB ¼ 1), the definition of the cut-off

wave-number reduces to that of our previous description14

(see Eq. (30), Sec. VI), in which case the various terms in

Eq. (17) may be understood as follows. At relatively low K,

perturbations grow primarily as a result of feedback between

the Nernst effect (AN) and the Righi-Leduc heat-flow (Cj)

accounted for by the principal source term SP / ANCj. Since

this term is proportional to K3 and occurs within the square-

root, it yields growth that goes as K3=2. The main damping

terms arising from thermal (DT) and resistive (DR) diffusion,

however, are proportional to K2 and only out-compete the

source term at higher wave-numbers. Thus, the form of the

dispersion curves in Figures 2 and 3: the growth-rate

increases with K up to some maximum and then decreases

to zero at a cut-off wave-number for which the source and

diffusive terms are exactly matched. Notice that the angular

TABLE II. Dimensionless parameters used in linear theory.

Dimensionless parameter Definition

Perturbation frequency X¼ xsT

Perturbation wave-number K¼ kkT

Sound speed Vs¼ vs=vT

Length-scale of scalar f0 2 fT0;B0; n0g Lf ¼ lf =kT

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

Wavenumber k (μm)−1

G
ro

w
th

 R
at

e 
γ=

ℑ
{ω

} 
(n

s)
−

1

 

 

Theory (CT regime)
Theory (HD regime)
CTC+ (Temperature)
CTC+ (B−field)

FIG. 2. Dispersion relations for unstable modes calculated from one-

dimensional CTCþ simulation profiles of a 6 T magnetised plasma (see

Sec. IV). The curves correspond to predictions in both the classical transport

(solid curve) and the hydrodynamical (dashed curve) regimes described in

Secs. III A and III B respectively. Growth-rates of the thermal and field per-

turbations measured from two-dimensional perturbed simulations (red and

blue crosses, respectively) are also included (see Sec. IV). The data used to

calculate the theoretical curves are summarised in Table III.
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dependence of SP means that a y-component to the pertur-

bation is needed for instability; consequently, in the simula-

tion results presented in Sec. IV, we take h ¼ p=2, i.e.,

sin h ¼ 1.

The velocity term VB can enhance instability by modi-

fying the phase between thermal and field perturbations,

but is understood to be inessential because solutions with

=fXCTg > 0 exist even when VB ¼ 0: a feature of Eq. (17)

not replicated if SP ¼ 0. Similarly, the source term

SE / ANAE, which describes feedback between the Nernst

(AN) and Ettingshausen (AE) effects, cannot itself drive

unstable waves, but provides an important contribution to

instability by reducing the impact of diffusion in the de-

nominator of final term of Eq. (19).

The net effect of density gradients in the CT regime,

therefore, is to modify VB by the factor KB (accounting for

additional divergence in the Righi-Leduc heat-flow) and to

introduce a new source term SG / CGCj describing feedback

between the Righi-Leduc heat-flow (Cj) and field generation

(CG) from the temperature perturbation (rdT �rn0).33 Of

these, the introduction of SG is by far the most important

since it represents the contribution to instability arising from

the field generating thermal instability mechanism.15–19 That

SG should be identified with the field generating source term

may be justified by considering the low-field limit v! 0

with h ¼ p=2; in this case, the CT dispersion relation reduces

to that of the field generating instability described by Tidman

and Shanny,15 and the square of the cut-off becomes

K2
G ¼ lim

v!0
K2

CT ¼
SG

4DTDR
¼ 1

4DTDR

2c2
B

3LTLn

@j^
@v

� �
: (20)

Since we require the cut-off wave-number to be real

(K2
G > 0), we thereby recover the well-known result for

unmagnetised conditions (v ¼ 0 and @j^=@v > 0) that the

field generating source SG can drive instability when tempera-

ture and density length-scales are parallel, i.e., LTLn > 0. And

in a magnetised plasma, with v& 1 and @j^=@v < 0, the same

term drives instability when LTLn < 0. [A result first noted by

Fruchtman and Strauss.20 Nevertheless, by neglecting diffusive

and advective effects, these authors failed to specify both the

forms of the cut-off wave-number KCT and the role of damping

terms, and completely missed the significance of the magneto-

thermal source term SP.] In general, however, the combined

effect of the magnetothermal and field-generating source terms

under magnetised conditions must be understood from the defi-

nition of the cut-off wave-number KCT in Eq. (19): the field

generating source SG combines with the magnetothermal source

SP to enhance instability (that is, greater K2
CT) whenever

SG > 0, counteracting it otherwise (SG < 0).

B. HD regime

As with the CT dispersion relation in Sec. III A, the positive

root to the dispersion relation in the hydrodynamical regime (Eq.

(18)) yields unstable solutions for a range of K up to a cut-off

wave-number, which in this case is labelled KHD and defined by

K2
HD ¼

�
3

5

S2
P

4
1þ DRLT

ANLB
KB

� �
1� 3DTLT

5ANLB
KB

� �

� 1
3
5

DT þ DR

 !2

þ KGSG

��
1

4DTDR � SE

�
: (21)

The similarity between the form of XCT and XHD, and

the cut-offs KCT and KHD, indicates that instability growth-

rates are comparable in both classical transport and hydrody-

namical regimes: a feature evident in the dispersion curves

of Figures 2 and 3. Indeed, aside from the factors of 3
5
¼ c�1

c ,

where cc is the ratio of specific heat capacities for an ideal

gas, the only new feature of Eq. (18) compared to Eq. (17) is

the introduction of a parameter KG ¼ ð1þ Ln=LTÞ. This

term is a direct consequence of the introduction of density

perturbations dn 6¼ 0 in our hydrodynamical analysis: multi-

plying by KG ensures that the field generating source term

SG accounts for generation due to both rdT �rn0 and

rT0 �rdn in the rTe �rne mechanism. [This effect was

first noted by Ogasawara et al.18 and means that the field

generating thermal instability can be active in unmagnetised

plasmas, for which v ¼ 0 and @j^=@v > 0, when LTLn < 0.]

However, by the form of the cut-off KHD defined in Eq. (21),

we find that in the HD regime the field generating source SG

will only combine with the magnetothermal source SP to

drive instability provided KGSG > 0. Hence, because KG can

have the opposite sign to SG, the field generating source can

have a stabilising effect on the magnetothermal instability

(KGSG < 0) in the HD regime regardless of whether it

enhances instability in the CT limit with SG > 0, and vice
versa. This result is particularly important for experimental

contexts in which the magnetothermal mechanism is thereby

rendered the sole source of instability (see Sec. V).

IV. COMPARISON WITH SIMULATION

Given the assumptions made in our generalised linear

theory, it is instructive to compare theoretical growth-rates with

those measured from simulation of the magnetothermal insta-

bility in an experimental context. To this end—as in our origi-

nal paper—we consider conditions based on the investigation

by Froula et al. into the suppression of non-local transport

by magnetic fields.9 However, in this paper, we compare
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FIG. 3. Dispersion relations for unstable modes calculated from one-

dimensional CTCþ simulation profiles of a 12 T magnetised plasma (see

Sec. IV). As in Figure 2, the curves correspond to predictions in both the

classical transport (solid curve) and the hydrodynamical (dashed curve)

regimes; while growth-rates of the thermal and field perturbations measured

from two-dimensional perturbed simulations (red and blue crosses, respec-

tively) are also included (see Sec. IV). The data used to calculate the theoret-

ical curves in this case are also summarised in Table III.
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numerical results with dispersion relations from both the CT

and HD regimes, Eqs. (17) and (18) respectively, and use

CTCþ, our transport code with coupled magnetohydrodynamic

motion, as the primary numerical tool (i.e., rather than our

purely transport code CTC, see Sec. VII). In Froula’s experi-

ment, a nitrogen gas-jet (Z ¼ 7) of number density ne ¼
1:5� 1019 cm�3 and initial temperature Te ¼ 20 eV was sub-

ject to long-pulse (> 1ns) inverse-bremsstrahlung heating by a

laser of wavelength 1054nm and intensity 6:3� 1014 Wcm�2

focused to a 150 lm diameter spot. Uniform magnetic fields of

strengths up to 12T were imposed parallel to the heating beam,

and the radial heat-flow inferred from temperature and density

measurements. These parameters should be assumed in what

follows; however, because our linear theory is based on a planar

x-y geometry, we simulate a laser heating “strip” rather than a

circular spot, using a heating operator ULðxÞ that is a function

of x-position only (cf. Bissell et al.).14

The dependence of the DT;R;VB, and SG;P;E coefficients

on the zeroth-order principal quantities T0ðx; tÞ;B0ðx; tÞ, and

n0ðx; tÞ means that instability growth-rates vary temporally

and spatially. Evaluation of the dispersion relation is thus

limited to a particular cross-section through the plasma at a

particular time, and hence on a unique snapshot of the bulk

profile (see Table III).33 Furthermore, the generalised theory

of the magnetothermal instability yields two dispersion

curves for any given profile—one for each of the CT or HD

regimes defined in Eqs. (16)—and it should be noted that

neither may necessarily correspond exactly to the actual

plasma conditions. Nevertheless, the instability growth-rates

c ¼ =fxg determined from simulation results may be used

in place of the complex frequency x ¼ X=sT to estimate

how far either of these conditions hold. Indeed, for the data

in Figure 2, simulation indicates a peak wave-number kM

and growth-rate cMðkMÞ such that (see Table IV)

c2
M=v

2
s k2

M ¼ C2
M=V2

s K2
M � 0:37. 1; (22)

where CM ¼ cMsT , so that neither hydrodynamic nor insta-

bility rates dominate dynamics: the plasma is intermediate

between the two regimes. Nevertheless, for the simulation

data in Figure 3, we have (again, see Table IV)

c2
M=v

2
s k2

M ¼ C2
M=V2

s K2
M � 0:09� 1 (23)

indicating relative dominance of hydrodynamic rates and

association with the HD regime. With inequalities (22) and

(23) mind, the CTCþ numerical data in Figures 2 and 3 lend

compelling support to our theoretical analysis: measured

rates lie broadly between the CT and HD curves in Figure 2,

and are more closely aligned with the HD curve in Figure 3.

V. PRINCIPAL INSTABILITY MECHANISM

Since the inclusion of density gradients and hydrody-

namics into our generalised theory yields both field com-

pressing (magnetothermal) and field generating source

terms, SP and SG, respectively, it is appropriate to consider

how the two mechanisms compare. Indeed, we have already

seen that by increasing the magnitude of the respective cut-

off wave-numbers, field generation enhances instability in

the CT regime whenever SG > 0 (Sec. III A), and in the HD

regime when KGSG > 0 (Sec. III B). Consequently, and as

we shall now demonstrate, comparing the magnitude of each

mechanism’s contribution to the cut-offs KCT and KHD pro-

vides a natural means of assessing their relative dominance.

Before proceeding, note that AN � DT , so from our

assumption K2 � maxf1; v2g, we have (see Figure 4)

AN � DT � DR: (24)

If we assume jLBj& jLT j, this inequality means that we

can define characteristic wave-numbers KPCT and KPHD

describing the approximate contributions to the cut-off

wave-numbers from the magnetothermal mechanism (SP) in

the CT and HD regimes, respectively,

K2
PCT ¼

C2
j sin2h
L2

T

1� LT

LB
KB

� �
4

4DTDR � SE

� �
;

K2
PHD ¼

5

3

C2
j sin2h
L2

T

1� 3LT

5LB
KB

� �
4

4DTDR � SE

� �
: (25)

Indeed, by these definitions, the total cut-off wave-

numbers of Eqs. (19) and (21) may be approximated

TABLE III. Summary of data used to generate the dispersion curves in Fig-

ures 2 and 3 for both the CT and HD regimes. Here the first column labelled

“Field” refers to the initial uniform magnetic fluxdensity jBj applied at time

t ¼ 0, while the x-position of the cross-section is x ¼ 120 lm in each case.

The data in this table are derived from snapshots taken after 500 ps of laser

heating for the 6 T plasma and 700 ps for the 12 T plasma.

Field Te=keV ne=1021cm�3 lT=lm lB=lm ln=lm v K

6 T 0.392 0.0149 �190 129 592 2.4 20.5

12 T 0.436 0.0142 �152 152 235 6.1 26.0

TABLE IV. Comparison between the peak growth-rate cM ¼ =fxðkMÞg and

characteristic hydrodynamic rate kMvs measured from simulation in Figures 2

and 3 (where kM is the peak wave-number and vs is the sound speed). In both

figures, computational data are taken from the cross-section x ¼ 120 lm used

to evaluate the dispersion relations (see Table III).

Reference vs=kms1 kM=lm�1 cM=ns�1 ðcM=kMvsÞ2

Figure 2 177 � 0:14 � 15 � 0:37

Figure 3 187 � 0:18 � 10 � 0:09
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FIG. 4. The ratios AN=DT ; ðDRK2Þ=ðDTmaxf1; v2gÞ and jCjj=CG plotted for

a range of Hall parameters. From these curves, inequality (24) may be under-

stood as follows. First, since AN=DR � 1 (blue curve, square markers), we

have AN � DR. Second, because ðDRK2Þ= ðDTmax f1; v2gÞ. 1 (black curve,

circular markers), our initial assumption K2 � maxf1; v2g implies

DR=DT .max f1; v2g=K2 � 1, that is, DT � DR.
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K2
CT � K2

PCT þ KG
02 and K2

HD � K2
PHD þ KGKG

02; (26)

where KG
0 is the contribution from the field generating

source term, i.e.,

KG
02 ¼ CjCG sin2h

LTLn

4

4DTDR � SE

� �
; (27)

and as such tends to KG in the low v limit (see Eq. (20)).

Broadly speaking, this means that the magnetothermal mech-

anism dominates over the field generating mechanism in the

classical transport regime when

jK2
PCTj
jKG

02j ¼
Cj

CG

Ln

LT
� Ln

LB
þ 1

� �				
				 > 1 (28)

and in the hydrodynamical regime if

jK2
PHDj

jKGKG
02j ¼

Cj

CG

5Ln

3LT
� Ln

LB
þ 1

� �
LT

LT þ Ln

� �				
				 > 1; (29)

where the ratio jCj=CGj is plotted in Figure 4. Evaluating

these ratios using the scale-lengths and Hall parameters

given in Table III, we find jK2
PCT=KG

02j � 8:5 and

jK2
PHD=KGKG

02j � 5:2 for the dispersion curves in Figure 2,

while jK2
PCT=KG

02j � 3:1 and jK2
PHD=KGKG

02j � 8:5 for the

curves in Figure 3, that is, the magnetothermal mechanism

takes a share of the overall cut-off by between 	 75% and

	 90%. Under the conditions of Froula et al. considered

here,9 such dominance by the magnetothermal source in the

hydrodynamical regimes is in fact necessary for instability,

since in these cases the field generating mechanism acts to

suppress the growth of unstable modes, i.e., KGSG < 0.

However, the ratio jCj=CGj is small at low values of the Hall

parameter v (see Figure 4), implying that the magnetother-

mal mechanism will usually only represent the primary

source of instability provided v > 10�1, i.e., under magne-

tised conditions.

VI. APPROXIMATE PEAK GROWTH-RATE

When considering the relevance of instability to experi-

mental conditions, it is often useful to have a means of

approximating peak wave-numbers kM and growth-rates

cMðkMÞ. Sadly, given both the number of free parameters in

the dispersion relations (Eqs. (17) and (18)) and the complica-

tion of solving for the complex-roots, providing an analytic

approximation is not possible for the general magnetothermal

instability analysis introduced here. Nevertheless, density

length scales Ln are often much longer than those associated

with the magnetic field LB, i.e., KB � 1, and in these cases,

progress towards an approximate solution can be made for

those conditions under which the magnetothermal instability

source term dominates over the field generating mechanism.

In these cases, the SG source term may be neglected and the

cut-off wave-number in the CT regime becomes

K2
CT � K2

c ¼
S2

P

4
1þ DRLT

ANLB

� �
1� DTLT

ANLB

� �

� 1

DT þ DR

� �2�
1

4DTDR � SE

�
; (30)

which is identical to our previous result.14 Crucially, these

assumptions allow us to write the peak instability growth-rates

and wave-numbers in terms of two dimensionless functions,

fM 
 fMðv; LT=LB;K;KMLTÞ and gM 
 gMðv; LT=LB;KÞ,
each taking arguments given by the parameters v, K, and

LT=LB, i.e.,33

cM ¼
fM
sT

kT

lT

� �2

and kM ¼
gM

kT

kT

lT

� �
: (31)

These equations highlight the importance of steep tem-

perature gradients to the magnetothermal instability, through

the inverse proportionality of cM to l2
T , while plotting numeri-

cally solved values for fM and gM (see Figure 5) demonstrates

the need for intermediate Hall parameter to maximise the

value of the source SP.

The dimensionless form of Eq. (31) indicates the relevance

of the instability to a range of self-similar regimes, and in the

absence of alternative methods for predicting peak growth-rates

and wave-numbers (and as we shall demonstrate in Sec. VII),

both may be used to estimate the relevance of the instability to

different conditions. [Note: the following formulæ provide a

convenient means of calculating the parameters in their

arguments:

Coulomb Logarithm: logKei

� 6:9� log
Z

10

� �
þ 3

2
log

Te

keV

� �
� 1

2
log

ne

1021cm�3

� �
;

(32)

Thermal Mean-free-path: ðkT=lmÞ

� 3
logKei

5

� ��1 Z

10

� ��1 ne

1021cm�3

� ��1 Te

keV

� �2

; (33)

Thermal Collision Time: ðsT=psÞ

� 1

6

log Kei

5

� ��1 Z

10

� ��1 ne

1021cm�3

� ��1 Te

keV

� �3=2

; (34)
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late peak growth-rates in Eq. (31).
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Hall Paramter: v

¼ 3
ffiffiffi
p
p

4

kT

lm

� �
lm

rL

� �
� 1

4

sT

ps

� �
jBj
T

� �
and (35)

Ratio of Mean-free-path to Skin-depth: K

� 18
ne

1021cm�3

� ��1=2 Z

10

� ��1
log Kei

5

� ��1 Te

keV

� �2

;

(36)

with Te; ne; kT ; rL ¼ cBkT=v; sT and jBj measured in

keV; 1021cm�3; lm; lm; ps, and Tesla, respectively.]33

Naturally, such an approach neglects the contributions

due to the field generating source term SG and other effects

arising from hydrodynamics. Nevertheless, neither of these

weaknesses should deter estimation: indeed, we expect the

magnetothermal mechanism to be relatively dominant over

the generating source for intermediate magnetisation (see

Sec. V), and peak growth-rates are comparable in both CT

and HD regimes (see Sec. III B).

In the following section, therefore, we briefly describe a

number of experimental contexts in which the magnetother-

mal instability could be active and calculate approximate

values for both its characteristic growth-rate cM and wave-

length kM ¼ 2p=kM. Before proceeding, however, it is worth

making a final remark about the cut-off wave-number Kc.

Since this represents the cut-off when only the magnetother-

mal mechanism is active, and because we require Kc 2 R,

Eq. (30) implies

1 � AN=DT > LT=LB > �AN=DR; (37)

which is a necessary condition for magnetothermal instabil-

ity based on the ratio of the length-scales.

VII. EXPERIMENTAL RELEVANCE

The conditions of Froula et al.9 simulated here provide an

obvious case of relevance for the magnetothermal instability,

with characteristic wavelengths kM ¼ 2p=kM 	 40 lm and

peak growth times tM ¼ 1=cM 	 50ps, well within the nanosec-

ond time-scale of the experiment. One consequence of the insta-

bility in this context is the deformation of thermal energy

profiles. Indeed, by periodically concentrating the radial heat-

flow into “fingers”, the instability enhances the spread of thermal

energy (see Figure 1), possibly undermining Froula’s proposal of

using fields to suppress non-local heat-transport.9 This effect can

be characterised by comparing temperature profiles from one-

dimensional (and thus stable) simulations, with those derived

from two-dimensional unstable runs. Indeed, for planar simula-

tions, with a perturbation in the y-direction, average profiles can

found by calculating the mean temperature for each x cross-

section. Adopting this approach for an 8 T magnetised plasma,

after 900 ps of heating we find increased spreading of energy

relative to the stable case and cooling of the central region (see

Figure 6).33 Intriguingly, Froula et al. detected a similar signature

in their experimental data.9

Though the magnetothermal instability may increase

thermal transport relative to stable scenarios, the imposition

of magnetic fields in Froula’s experiment nevertheless

reduces thermal flux when compared with unmagnetised

conditions, leading to higher temperatures near the laser-

spot.9 Froula et al. exploited this effect with some success to

create “plasma channels,” using an experimental arrange-

ment and applied fields effectively identical to that of their

heat-flow investigation above;10 though for this subsequent

study, both helium (Z¼ 2) and nitrogen (Z¼ 7) gas-jets were

probed. Despite the difference in number density ne and

atomic number Z for these media, peak wavelengths and

growth-rates of the magnetothermal instability are similar in

each (see Table V), suggesting that the instability could com-

promise the formation of smooth plasma channels.

The conditions relevant to Froula’s experiments are well

suited to simulation by both CTC and its hydrodynamic

counterpart CTCþ and warrant further numerical investiga-

tion in cylindrical geometry. The remainder of this section,

therefore, is devoted to more speculative estimates of the

magnetothermal instability’s possible impact under condi-

tions in which magnetic fields are self-generated: first, to

experiments by Li et al. designed to study magnetic field

structures on the surface of plasma bubbles;11–13 and second,

to both inertial confinement3–5 and magneto-inertial

fusion.6–8 However, these preliminary estimates based on

Eq. (31), and which assume lT 	 �lB, should be treated with

some caution. They are summarised alongside those for

Froula’s work9,10 in Table V.

A. Field structures on the surfaces of plasma bubbles

Unlike Froula’s experiments, in which large fields were

imposed on a uniform gas-jet, Li et al.11,12 studied the evolution

of magnetic fields self-generated on the surface of plasma

bubbles. In Li’s case, the plasma is formed by irradiating a

plastic foil (CH, Z ¼ 3:5) with a nanosecond laser-pulse of

intensity 	 1014 Wcm�2 focused to an 800 lm spot: during

the illumination phase (. 1 ns), plasma is blown from the

foil as an hemispherical bubble and continues to expand—

preserving approximate cylindrical symmetry co-axial with

the beam—after the laser is turned off (& 1 ns). Li et al.
measured strong fields 	 0:3 MG ¼ 30 T along the surface

FIG. 6. Temperature profiles calculated by CTC simulation (left) and results

sourced from Froula’s investigation9 (right), demonstrating cooling of the cen-

tral region due to instability while the laser is at full power.33 The CTC data

are taken after 900 ps heating of a plasma initially magnetised at 8 T: from

one-dimensional simulation in the stable case (black curve); and from condi-

tions identical to those of our original paper in the unstable case (blue

curve).14 Note that in these simulations, we use our transport code without

hydrodynamic flow, so that thermal spreading derives from the instability

rather than compressional cooling. Froula’s data are from investigation of a

12 T plasma after 1.6 ns of heating in cylindrical geometry: both one-

dimensional lasnex simulation (black curve) and experiment (blue squares).9
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of the bubbles and periodic modulation in the magnetic field

structure, perpendicular to both the field and temperature

gradients, conditions under which we expect the magneto-

thermal instability to be active.11,12

Li’s initial studies were mainly of observational impor-

tance,11,12 and it was only in later work that a mechanism

for field modulations in terms of magneto-hydrodynamic

instability was proposed.13 The model itself shall not be con-

sidered here, but we note that its linear phase predicts

growth-rates 	1 ns�1; since these are insufficient to explain

the magnitude of the structures over the 	2 ns experimental

time-scale, Li et al. reference secondary “explosive” non-

linear processes which they do not fully describe. However,

after reducing the field strength estimate to 10 T (to account

for generation up to 30 T), the group’s parameters suggest

that the magnetothermal instability would have a characteris-

tic growth-rate cM 	25 ns�1 and wavelength kM 	 10 lm in

this context and could account for the field structure without

appeal to secondary mechanisms (see Table V). Indeed, this

value for kM compares well with the characteristic instability

length-scale of 10 lm seen in simulations of the bubble.13

Nevertheless, since the fields in this experiment are azi-

muthal, magnetic tension could act to stabilise the magneto-

thermal mechanism. Further work is needed to assess the

robustness of our model outside planar geometry.

B. Inertial confinement and magneto-inertial fusion

Estimates for the magnetothermal instability growth-

rates under I.C.F. conditions may be made based on compu-

tational data. Indeed, using values taken from simulations of

a methane filled hohlraum (CH4; Z ¼ 2) by Glenzer et al.4—

which show magnetic field structures of approximately

0:4 MG ¼ 40 T extending over scales of > 0:5 mm—Eqs.

(31) predict cM 	 50 ns�1, with characteristic wavelength

kM 	 5 lm (see Table V). These values suggest the instabil-

ity could impact during nanosecond heating of the hohlraum.

For M.I.F. studies, in which magnetic-fields are directly

imposed on the imploding target, there exist more detailed

simulation data concerning field gradients.6–8 Following a 4ns

implosion of the target—to compress both the seed field and

Deuterium fuel (D2; Z¼ 1)—electron temperature and field

gradients are parallel, with lT 	 5 lm and lB 	 10 lm.7,8

Since this makes lT=lB 	 0:5, M.I.F. conditions, post implo-

sion are very much on the border of the 1 > lT=lB requirement

for magnetothermal relevance (see inequality (37)). Calculat-

ing the instability growth-rates and characteristic wavelength

for these parameters, we find cM 	 15 ns�1 and kM 	 5 lm.

However, owing to the sensitivity of this estimate to the value

of lT=lB, and because the M.I.F. hotspot radius 	10 lm is

comparable to kM, the impact of the magnetothermal instabil-

ity in this context is somewhat questionable. Sadly, there is

insufficient data to assess its relevance during the compression

phase when inequality (37) may be more easily satisfied.

C. Kinetic effects

When compared to the electron thermal Larmor radius

rL ¼ cBkT=v, the relatively small wavelengths corresponding

to the peak instability wave-numbers mean that non-local trans-

port is relevant to the experiments summarised in Table V;

indeed, we expect non-local effects to become important

whenever jkMrLj& 1. Though the physical mechanism of the

instability remains the same under these conditions, non-

locality is expected to reduce the predictive power of our theory

by modifying the values of the transport coefficients. Neverthe-

less, simulation using our kinetic code IMPACT (see Figure 7)

in the context of Froula’s experiment9 shows that this reduction

is not serious: the peak growth-rate and cut-off wave-number

agree to within approximately 35% and 25% respectively,

while the peak wave-number is effectively unchanged. In fact,

steeper temperature gradients in the kinetic runs actually make

the instability grow faster than in the CTCþ simulations shown

in Figures 2 and 3. Consequently, though non-locality should

be considered in greater detail as future work, the growth-rates

given in Table V probably represent realistic estimates.

Inverse bremsstrahlung (I.B.), the dominant mechanism

of heating in under-dense plasmas for laser intensities in the

range 1014 � 1016 Wcm�2, can introduce an additional

TABLE V. Estimated growth-times tM ¼ 1=cM and characteristic wavelengths kM ¼ 2p=kM for the magnetothermal instability in various experimental contexts

(with parameters sourced from the relevant references as indicated in the first column). Excepting M.I.F., for which lT=lB 	 0:5 is used, we assume the antiparallel

relationship �lT 	 lB.

Conditions Te B ne Z lT v K kT rL sT cM tM kM kM

(Units) (keV) (T) (1021cm�3) (n/a) (lm) (n/a) (n/a) (lm) (lm) (ps) (ns�1) (ps) (lm�1) (lm)

Froula et al.9 0.4 4 0.015 7 150 2.5 20 30 16 2.5 20 50 0.16 40

Froula et al.10 0.2 3 0.00075 2 200 40 70 400 13 50 10 100 0.25 25

Li et al.13 0.4 10 0.0035 3.5 100 45 75 200 6 20 25 40 0.63 10

I.C.F.4 2.5 40 0.25 2 300 60 550 200 4.5 10 50 20 1.3 5

M.I.F.7,8 1.0 1000 200 1 5 2 10 0.1 0.07 0.006 15 70 1.3 5

FIG. 7. Comparison between the transport theory of the instability (solid

and dashed curves) and growth-rates measured from kinetic simulation of a

6 T plasma using IMPACT (red and blue crosses). Here, the theoretical dis-

persion curves are calculated from impact profiles at the cross-section x �
120 lm after 500 ps of heating and using a range of super-Gaussian powers

m [IMPACT data from our original paper].14
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kinetic effect in long-pulse (nanosecond) laser-plasma inter-

actions, even when non-locality is suppressed.31 Indeed, I.B.

preferentially heats the more collisional, slower moving elec-

trons, reducing their number and increasing the population

of electrons with intermediate velocity v. This effect simulta-

neously flattens and broadens the distribution function f0
away from a Gaussian f0 / expð�½v=vT �2Þ towards a super-

Gaussian, that is, f0 / expð�½v=aevT �mÞ, where m 2 ½2; 5�
and ae is a function of m, thereby altering the transport coef-

ficients. Indeed, Ridgers et al.31 demonstrated that in Frou-

la’s experiment,9 the super-Gaussian power lies in the range

3:3 > m > 2:0 as the distance from the laser spot centre is

increased. Fortunately, since modified super-Gaussian coeffi-

cients have been evaluated,31 the effects of I.B. heating may be

readily included in our calculations of the dispersion relation

and compared with kinetic data (see Figure 7). Interestingly,

though I.B. does not seem to dramatically suppress instability

growth-rates, the theoretical dispersion curves in Figure 7

agree better with the kinetic data when we take m¼ 3.0 rather

than m¼ 2.0, suggesting that more work is needed to distin-

guish between non-local and super-Gaussian effects.

VIII. SUMMARY AND CONCLUSIONS

We have generalised the theory of the magnetothermal

instability14 to include effects arising from both density gra-

dients and hydrodynamics. By examining two limiting

cases—a CT and an HD regime—we showed that it was nec-

essary to modify the theory by introducing the field generat-

ing thermal instability source term,15–20 which can either

complement or oppose the magnetothermal mechanism in

driving unstable waves (Secs. II and III). The generalised

theory was compared favourably with classical transport

CTCþ simulations in the context of a nanosecond gas-jet

experiment by Froula et al.,9 for which we predict the insta-

bility to have characteristic growth-rates and wavelengths of

order 10 ns�1 and 50 lm, respectively, well within the exper-

imental timescales (Sec. IV).

Comparing contributions from the magnetothermal and

field generating sources for the conditions of Froula et al.,9

we demonstrated that magnetothermal effects dominate

instability in the CT regime and are the only source of unsta-

ble feedback in the HD regime (Sec. V). More generally, for

magnetised conditions v > 10�1 with density length-scales

Ln comparably longer than magnetic field length-scales LB,

we expect the magnetothermal mechanism to be the primary

driver of instability. Indeed, for such conditions we found

approximate expressions for both peak instability growth-

rates and wave-numbers (Sec. VI). Preliminary calculations

based on these expressions suggest that the magnetothermal

instability may take effect in both experiments recently con-

ducted by Li et al.11–13 and I.C.F. hohlraums (Sec. VII).

The existence of the magnetothermal instability indi-

cates strongly the need to include both the Nernst effect and

Righi-Leduc heat-flow in fluid models of plasmas for which

large cross-field heat-flows are expected, especially those at

intermediate magnetisation. Growth from noise of the insta-

bility’s peak modes further implies that such modelling

should be two-dimensional. Indeed, planar simulations in

the context of Froula’s experiment to suppress non-local

heat-flow9 demonstrate that the instability enhances thermal

energy transport relative to one-dimensional (stable) runs,

prematurely cooling the laser-heated region while the laser is

at full power. It is possible that such a signature could

be used to gather experimental evidence of the instability’s

onset.

Our model of the magnetothermal instability assumes a

Cartesian geometry in which fields B are perpendicular to

both vector quantities A and the gradients of scalars f, that is,

B�A ¼ B�rf ¼ 0. Further theoretical refinement is needed

to better assess the instability’s consequences for experi-

ments in which this condition does not hold. For example,

the inclusion of both planar and curved fields would allow us

to assess the importance of magnetic tension and presumably

yield more accurate estimates of instability growth-rates in

laser-plasmas with azimuthal field geometries, and possibly

even more diverse applications, such as Z-pinches. Kinetic

effects are also likely to be significant; indeed, the IMPACT

simulations presented here already suggest some role for

non-locality. Crucially, however, our current model predicts

that the instability will be most active when the ratio of the

thermal mean-free path kT to the temperature length-scale lT
is relatively large (i.e., steep temperature gradients); in prin-

ciple, therefore, both non-locality and anisotropic pressure

should be included in future studies.33

1S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965).
2A. Nishiguchi, T. Yabe, and M. G. Haines, Phys. Fluids 28, 3683 (1985).
3J. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W.

Haan, R. L. Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11,

339 (2004).
4S. H. Glenzer, W. E. Alley, K. G. Estabrook, J. S. D. Groot, M. G. Haines,

J. H. Hammer, J.-P. Jadaud, B. J. MacGowan, J. D. Moody, W. Rozmus,

L. J. Suter, T. L. Weiland, and E. A. Williams, Phys. Plasmas 6, 2117

(1999).
5P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, S. Minardi, M.

S. Wei, P. Fernandes, M. Notley, S. Bandyopadhyay, M. Sherlock, R. J.

Kingham, M. Tatarakis, Z. Najmudin, W. Rozmus, R. G. Evans, M. G.

Haines, A. E. Dangor, and K. Krushelnick, Phys. Rev. Lett. 97, 255001

(2006).
6O. Gotchev, N. Jang, J. Knauer, M. Barbero, R. Betti, C. Li, and R. Pet-

rasso, J. Fusion Energy 27, 25 (2008).
7O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O. Polo-

marov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso, J. R. Rygg, F.
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