197 research outputs found
Diffusivities and kinetics of short-range and long-range orderings in Ni-Fe permalloys
The microscopic model of atomic diffusion is considered to describe the
short-range order relaxation kinetics within the f.c.c.-Ni-Fe Permalloys. The
model takes into account both the discrete and anisotropic characters of atomic
jumps within the long-range field of concentration heterogeneities of the
interacting atoms. The diffusion coefficients and activation energies for the
disordered Ni-Fe permalloy are estimated with the evaluated probabilities of
atomic jumps. As shown, the increasing of a temperature with a fixed
composition influences on the 'potential' field of interatomic interaction
ambiguously: the field 'potential' increases for defined coordination shells
and decreases for some of other ones. Although the temperature increasing
promotes the increasing of any atomic-probabilities jumps generally, but
decreasing of the action of 'potential' field generated by the atoms of defined
element and caused by its concentration heterogeneities onto the distant sites
results in increasing of the atomic-jumps' probabilities of just this element,
first of all, into the sites, which are more distant from the 'source' of
heterogeneity. Within the framework of the static concentration waves' method
along with the self-consistent field approximation, the Onsager-type kinetics
equation is obtained to describe the long-range order relaxation by the
L12-type superstructure. To calculate diffusivities for the ordered Ni3Fe
permalloy, the independent, diffraction experimental data of the long-range
order parameter relaxation are used. Theoretical curves of the long-range order
time evolution for the non-stoichiometric f.c.c.-Ni-Fe permalloys are plotted.
Decreasing of the concentration of alloying element results in decelerating of
the long-range order parameter change and in increasing of its relaxation time
Superconducting joining of melt-textured Y-Ba-Cu-O bulk material
The Tm-Ba-Cu-O solder can be successfully used to produce a superconductive
joint between MT-YBCO parts. The peculiarities of solidification, phase
formation, structure transformations and electromagnetic properties of MT-YBCO
soldered with TmBa2Cu3O7-d are discussed.Comment: PS of 6 pages text and 5 figures, presented at ICMC'2000, Brasi
ΠΠΠΠΠΠ ΠΠ ΠΠΠΠΠ Π’Π ΠΠΠΠΠΠΠΠ‘Π’ΠΠ ΠΠΠΠ’ΠΠΠ ΠΠΠΠ― ΠΠ Π’ΠΠΠ£ΠΠ―Π¦ΠΠΠΠ₯ Π Π£Π₯ΠΠ Π©ΠΠΠΠΠ Π£ Π¦ΠΠ€Π ΠΠΠΠΠ£ Π‘ΠΠ ΠΠΠΠΠΠ©Π
Introduction. The use of virtual articulators, which are essentially software, greatly enhances the effectiveness of planning and implementing stages of complex dental rehabilitation with the ability to completely translate patient data (not only anatomical but also functional) into a digital format.The aim of study. Carry out an analysis of design and simulation systems for jaw kinematic parameters reproduction, basic principles of the architecture of existing software aimed at reproducing articulation components and constructing individualized occlusion patterns during patient-oriented prosthetic treatment.Materials and methods. The search for publications in electronic databases (PubMedCentral (PMC), BioMed Central, InTech, MEDLINE / PubMed, the Public Library of Science One (PloS)) was carried out in accordance with the Medical Subject Headings (MeSH) descriptors, which are peculiar headings categorized by the hierarchy system. Additionally, the analysis of references in already pre-made system reviews related to the objectives of this study and other review publications adjacent to them was provided.Results. The systematic review of the principles of digital modeling of articulation schemes with different initial conditions confirmed the possibility of their practical application during the manufacture of prosthetic elements with individualized occlusive surfaces, thus ensuring the achievement of the best results of dental rehabilitation.Conclusions. A systematic review of the main possibilities for reproduction jaw articulation movements in the digital environment is the primary stage in the development of an own model of a digital atticulator to address specific clinical problems associated with prosthetic retreatment of patients with present occlusive dysfunctions.ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΈΡΡΡΠ°Π»ΡΠ½ΡΡ
Π°ΡΡΠΈΠΊΡΠ»ΡΡΠΎΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎ ΡΡΡΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠ΅ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΠ΅, Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ²ΡΡΠ°Π΅Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΠ»Π°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ ΡΡΠ°ΠΏΠΎΠ² ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π°Π±ΠΈΠ»ΠΈΡΠ°ΡΠΈΠΈ Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡΡ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° Π΄Π°Π½Π½ΡΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° (Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π°Π½Π°ΡΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
, Π½ΠΎ ΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
) Π² ΡΠΈΡΡΠΎΠ²ΠΎΠΉ ΡΠΎΡΠΌΠ°Ρ.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΡΠΎΠ²Π΅ΡΡΠΈ Π°Π½Π°Π»ΠΈΠ· ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΠ·Π°ΠΉΠ½Π° ΠΈ ΠΈΠΌΠΈΡΠ°ΡΠΈΠΈ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅Π»ΡΡΡΠΈ, ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠ² Π°ΡΡ
ΠΈΡΠ΅ΠΊΡΡΡΡ ΠΈΠΌΠ΅ΡΡΠ΅Π³ΠΎΡΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠ³ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ Π°ΡΡΠΈΠΊΡΠ»ΡΡΠΈΠΎΠ½Π½ΡΡ
ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ
ΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΎΠΊΠΊΠ»ΡΠ·ΠΈΠΎΠ½Π½ΡΡ
ΡΡ
Π΅ΠΌ Π² Ρ
ΠΎΠ΄Π΅ ΠΏΠ°ΡΠΈΠ΅Π½Ρ-ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡΡΠΎΠΏΠ΅Π΄ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠΎΠΈΡΠΊ ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΉ Π² ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΡ
Π±Π°Π·Π°Ρ
Π΄Π°Π½Π½ΡΡ
(PubMedCentral (PMC), BioMed Central, InTech, MEDLINE / PubMed, Public Library of Science One (PloS)) ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»ΡΡ ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ Π΄Π΅ΡΠΊΡΠΈΠΏΡΠΎΡΠΎΠ² Medical Subject Headings (MeSH), ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΠΈΡ
ΡΠΎΠ±ΠΎΠΉ ΡΠ²ΠΎΠ΅ΠΎΠ±ΡΠ°Π·Π½ΡΠ΅ Π·Π°Π³ΠΎΠ»ΠΎΠ²ΠΊΠΈ, ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠΎ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΈΠ΅ΡΠ°ΡΡ
ΠΈΠΈ. ΠΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΡΡ Π°Π½Π°Π»ΠΈΠ· ΡΡΡΠ»ΠΎΠΊ Π² ΡΠΆΠ΅ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΡ
ΡΠΈΡΡΠ΅ΠΌΠ½ΡΡ
ΠΎΠ±Π·ΠΎΡΠ°Ρ
, ΠΊΠ°ΡΠ°ΡΡΠΈΡ
ΡΡ ΡΠ΅Π»ΠΈ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ, ΠΈ Π΄ΡΡΠ³ΠΈΡ
ΠΎΠ±Π·ΠΎΡΠ½ΡΡ
ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΡΡ
, ΡΠΌΠ΅ΠΆΠ½ΡΡ
Ρ Π½ΠΈΠΌΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠΉ ΡΠΈΡΡΠ΅ΠΌΠ½ΡΠΉ ΠΎΠ±Π·ΠΎΡ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠ² ΡΠΈΡΡΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π°ΡΡΠΈΠΊΡΠ»ΡΡΠΈΠΎΠ½Π½ΡΡ
ΡΡ
Π΅ΠΌ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΠΈΡΡ
ΠΎΠ΄Π½ΡΠΌΠΈ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌΠΈ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠ΄ΠΈΠ» Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΡ
ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΏΡΠΈ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΠΈ ΠΏΡΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Ρ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ ΠΎΠΊΠΊΠ»ΡΠ·ΠΈΠΎΠ½Π½ΡΠΌΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΡΠΌΠΈ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Ρ ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π°Π±ΠΈΠ»ΠΈΡΠ°ΡΠΈΠΈ.ΠΡΠ²ΠΎΠ΄Ρ. Π‘ΠΈΡΡΠ΅ΠΌΠ½ΡΠΉ ΠΎΠ±Π·ΠΎΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠ΅ΠΉ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π°ΡΡΠΈΠΊΡΠ»ΡΡΠΈΠΎΠ½Π½ΡΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΡΠ΅Π»ΡΡΡΠΈ Π² ΡΠΈΡΡΠΎΠ²ΠΎΠΉ ΡΡΠ΅Π΄Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΠΌ ΡΡΠ°ΠΏΠΎΠΌ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠΈΡΡΠΎΠ²ΠΎΠ³ΠΎ Π°ΡΠΈΠΊΡΠ»ΡΡΠΎΡΠ° Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΡ
ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ, ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ ΠΏΠΎΠ²ΡΠΎΡΠ½ΡΠΌ ΠΏΡΠΎΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΈΠΌΠ΅ΡΡΠΈΠΌΠΈΡΡ ΠΎΠΊΠΊΠ»ΡΠ·ΠΈΠΎΠ½Π½ΡΠΌΠΈ Π΄ΠΈΡΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ.ΠΡΡΡΠΏ. ΠΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ Π²ΡΡΡΡΠ°Π»ΡΠ½ΠΈΡ
Π°ΡΡΠΈΠΊΡΠ»ΡΡΠΎΡΡΠ², ΡΠΎ ΠΏΠΎ ΡΡΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΡ ΡΠΎΠ±ΠΎΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠ½Π΅ Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΠ΅Π½Π½Ρ, Π·Π½Π°ΡΠ½ΠΎ ΠΏΡΠ΄Π²ΠΈΡΡΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΏΠ»Π°Π½ΡΠ²Π°Π½Π½Ρ ΡΠ° ΡΠ΅Π°Π»ΡΠ·Π°ΡΡΡ Π΅ΡΠ°ΠΏΡΠ² ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΡ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ ΡΠ΅Π°Π±ΡΠ»ΡΡΠ°ΡΡΡ Π· ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ ΠΏΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π²Π΅Π΄Π΅Π½Π½Ρ Π΄Π°Π½ΠΈΡ
ΠΏΠ°ΡΡΡΠ½ΡΠ° (Π½Π΅ ΡΡΠ»ΡΠΊΠΈ Π°Π½Π°ΡΠΎΠΌΡΡΠ½ΠΈΡ
, Π° ΠΉ ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ½ΠΈΡ
) Ρ ΡΠΈΡΡΠΎΠ²ΠΈΠΉ ΡΠΎΡΠΌΠ°Ρ.ΠΠ΅ΡΠ° Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ. ΠΡΠΎΠ²Π΅ΡΡΠΈ Π°Π½Π°Π»ΡΠ· ΡΠΈΡΡΠ΅ΠΌ Π΄ΠΈΠ·Π°ΠΉΠ½Ρ ΡΠ° ΡΠΌΡΡΠ°ΡΡΡ ΠΊΡΠ½Π΅ΠΌΠ°ΡΠΈΡΠ½ΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡΠ² ΡΠ΅Π»Π΅ΠΏΠΈ, ΠΎΡΠ½ΠΎΠ²Π½ΠΈΡ
ΠΏΡΠΈΠ½ΡΠΈΠΏΡΠ² Π°ΡΡ
ΡΡΠ΅ΠΊΡΡΡΠΈ Π½Π°ΡΠ²Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠ½ΠΎΠ³ΠΎ Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΠ΅Π½Π½Ρ ΡΠΏΡΡΠΌΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π½Π° Π²ΡΠ΄ΡΠ²ΠΎΡΠ΅Π½Π½Ρ Π°ΡΡΠΈΠΊΡΠ»ΡΡΡΠΉΠ½ΠΈΡ
ΡΠΊΠ»Π°Π΄ΠΎΠ²ΠΈΡ
ΡΠ° ΠΏΠΎΠ±ΡΠ΄ΠΎΠ²Ρ ΡΠ½Π΄ΠΈΠ²ΡΠ΄ΡΠ°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ
ΠΎΠΊΠ»ΡΠ·ΡΠΉΠ½ΠΈΡ
ΡΡ
Π΅ΠΌ Π² Ρ
ΠΎΠ΄Ρ ΠΏΠ°ΡΡΡΠ½Ρ-ΠΎΡΡΡΠ½ΡΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΎΡΡΠΎΠΏΠ΅Π΄ΠΈΡΠ½ΠΎΠ³ΠΎ Π»ΡΠΊΡΠ²Π°Π½Π½Ρ.ΠΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ ΡΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΈ. ΠΠΎΡΡΠΊ ΠΏΡΠ±Π»ΡΠΊΠ°ΡΡΠΉ Ρ Π΅Π»Π΅ΠΊΡΡΠΎΠ½Π½ΠΈΡ
Π±Π°Π·Π°Ρ
Π΄Π°Π½ΠΈΡ
(PubMedCentral (PMC), BioMed Central, InTech, MEDLINE/ PubMed, Public Library of Science One (PloS)) Π·Π΄ΡΠΉΡΠ½ΡΠ²Π°Π²ΡΡ Π·Π³ΡΠ΄Π½ΠΎ Π΄Π΅ΡΠΊΡΠΈΠΏΡΠΎΡΡΠ² Medical Subject Headings (MeSH), ΡΠΎ ΡΡΠ°Π½ΠΎΠ²Π»ΡΡΡ ΡΠΎΠ±ΠΎΡ ΡΠ²ΠΎΡΡΡΠ΄Π½Ρ Π·Π°Π³ΠΎΠ»ΠΎΠ²ΠΊΠΈ, ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠ·ΠΎΠ²Π°Π½Ρ Π·Π° ΡΠΈΡΡΠ΅ΠΌΠΎΡ ΡΡΡΠ°ΡΡ
ΡΡ. ΠΠΎΠ΄Π°ΡΠΊΠΎΠ²ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ²ΡΡ Π°Π½Π°Π»ΡΠ· ΠΏΠΎΡΠΈΠ»Π°Π½Ρ Π² ΡΠΆΠ΅ ΠΏΠΎΠΏΠ΅ΡΠ΅Π΄Π½ΡΠΎ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ
ΡΠΈΡΡΠ΅ΠΌΠ½ΠΈΡ
ΠΎΠ³Π»ΡΠ΄Π°Ρ
, ΡΠΎ ΡΡΠΎΡΡΠ²Π°Π»ΠΈΡΡ ΠΌΠ΅ΡΠΈ Π΄Π°Π½ΠΎΠ³ΠΎ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ, ΡΠ° ΡΠ½ΡΠΈΡ
ΠΎΠ³Π»ΡΠ΄ΠΎΠ²ΠΈΡ
ΠΏΡΠ±Π»ΡΠΊΠ°ΡΡΡΡ
, ΡΡΠΌΡΠΆΠ½ΠΈΡ
ΡΠ· Π½ΠΈΠΌΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΉ ΡΠΈΡΡΠ΅ΠΌΠ½ΠΈΠΉ ΠΎΠ³Π»ΡΠ΄ ΠΏΡΠΈΠ½ΡΠΈΠΏΡΠ² ΡΠΈΡΡΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΡΠ²Π°Π½Π½Ρ Π°ΡΡΠΈΠΊΡΠ»ΡΡΡΠΉΠ½ΠΈΡ
ΡΡ
Π΅ΠΌ Π· ΡΡΠ·Π½ΠΈΠΌΠΈ Π²ΠΈΡ
ΡΠ΄Π½ΠΈΠΌΠΈ ΡΠΌΠΎΠ²Π°ΠΌΠΈ ΠΏΡΠ΄ΡΠ²Π΅ΡΠ΄ΠΈΠ² ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ ΡΡ
ΠΏΡΠ°ΠΊΡΠΈΡΠ½ΠΎΠ³ΠΎ Π·Π°ΡΡΠΎΡΡΠ²Π°Π½Π½Ρ ΠΏΡΠ΄ ΡΠ°Ρ Π²ΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½Π½Ρ ΠΏΡΠΎΡΠ΅ΡΠΈΡΠ½ΠΈΡ
Π΅Π»Π΅ΠΌΠ΅Π½ΡΡΠ² Π· ΡΠ½Π΄ΠΈΠ²ΡΠ΄ΡΠ°Π»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΌΠΈ ΠΎΠΊΠ»ΡΠ·ΡΠΉΠ½ΠΈΠΌΠΈ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΡΠΌΠΈ, Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΡΡΡΠΈ ΡΠ°ΠΊΠΈΠΌ ΡΠΈΠ½ΠΎΠΌ Π΄ΠΎΡΡΠ³Π½Π΅Π½Π½Ρ Π½Π°ΠΉΠ±ΡΠ»ΡΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΈΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡΠ² ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ ΡΠ΅Π°Π±ΡΠ»ΡΡΠ°ΡΡΡ.ΠΠΈΡΠ½ΠΎΠ²ΠΊΠΈ. Π‘ΠΈΡΡΠ΅ΠΌΠ½ΠΈΠΉ ΠΎΠ³Π»ΡΠ΄ ΠΎΡΠ½ΠΎΠ²Π½ΠΈΡ
ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΎΡΡΠ΅ΠΉ Π²ΡΠ΄ΡΠ²ΠΎΡΠ΅Π½Π½Ρ Π°ΡΡΠΈΠΊΡΠ»ΡΡΡΠΉΠ½ΠΈΡ
ΡΡΡ
ΡΠ² ΡΠ΅Π»Π΅ΠΏΠΈ Π² ΡΠΈΡΡΠΎΠ²ΠΎΠΌΡ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΡ Ρ ΠΏΠ΅ΡΠ²ΠΈΠ½Π½ΠΈΠΌ Π΅ΡΠ°ΠΏΠΎΠΌ ΡΠΎΠ·ΡΠΎΠ±ΠΊΠΈ Π²Π»Π°ΡΠ½ΠΎΡ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠΈΡΡΠΎΠ²ΠΎΠ³ΠΎ Π°ΡΠΈΠΊΡΠ»ΡΡΠΎΡΠ° Π΄Π»Ρ Π²ΠΈΡΡΡΠ΅Π½Π½Ρ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΈΡ
ΠΊΠ»ΡΠ½ΡΡΠ½ΠΈΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ ΠΏΠΎΠ²βΡΠ·Π°Π½ΠΈΡ
ΡΠ· ΠΏΠΎΠ²ΡΠΎΡΠ½ΠΈΠΌ ΠΏΡΠΎΡΠ΅Π·ΡΠ²Π°Π½Π½ΡΠΌ ΠΏΠ°ΡΡΡΠ½ΡΡΠ² ΡΠ· Π½Π°ΡΠ²Π½ΠΈΠΌΠΈ ΠΎΠΊΠ»ΡΠ·ΡΠΉΠ½ΠΈΠΌΠΈ Π΄ΠΈΡΡΡΠ½ΠΊΡΡΡΠΌΠΈ
Sodium Phenylbutyrate Controls Neuroinflammatory and Antioxidant Activities and Protects Dopaminergic Neurons in Mouse Models of Parkinsonβs Disease
Neuroinflammation and oxidative stress underlie the pathogenesis of various neurodegenerative disorders. Here we demonstrate that sodium phenylbutyrate (NaPB), an FDA-approved therapy for reducing plasma ammonia and glutamine in urea cycle disorders, can suppress both proinflammatory molecules and reactive oxygen species (ROS) in activated glial cells. Interestingly, NaPB also decreased the level of cholesterol but involved only intermediates, not the end product of cholesterol biosynthesis pathway for these functions. While inhibitors of both geranylgeranyl transferase (GGTI) and farnesyl transferase (FTI) inhibited the activation of NF-ΞΊB, inhibitor of GGTI, but not FTI, suppressed the production of ROS. Accordingly, a dominant-negative mutant of p21rac, but not p21ras, attenuated the production of ROS from activated microglia. Inhibition of both p21ras and p21rac activation by NaPB in microglial cells suggests that NaPB exerts anti-inflammatory and antioxidative effects via inhibition of these small G proteins. Consistently, we found activation of both p21ras and p21rac
in vivo in the substantia nigra of acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinsonβs disease. Oral administration of NaPB reduced nigral activation of p21ras and p21rac, protected nigral reduced glutathione, attenuated nigral activation of NF-ΞΊB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Consistently, FTI and GGTI also protected nigrostriata in MPTP-intoxicated mice. Furthermore, NaPB also halted the disease progression in a chronic MPTP mouse model. These results identify novel mode of action of NaPB and suggest that NaPB may be of therapeutic benefit for neurodegenerative disorders
Nck adapter proteins: functional versatility in T cells
Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3Ξ΅ subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation
Molecular Evolution of the Neuropeptide S Receptor
The neuropeptide S receptor (NPSR) is a recently deorphanized member of the G protein-coupled receptor (GPCR) superfamily and is activated by the neuropeptide S (NPS). NPSR and NPS are widely expressed in central nervous system and are known to have crucial roles in asthma pathogenesis, locomotor activity, wakefulness, anxiety and food intake. The NPS-NPSR system was previously thought to have first evolved in the tetrapods. Here we examine the origin and the molecular evolution of the NPSR using in-silico comparative analyses and document the molecular basis of divergence of the NPSR from its closest vertebrate paralogs. In this study, NPSR-like sequences have been identified in a hemichordate and a cephalochordate, suggesting an earlier emergence of a NPSR-like sequence in the metazoan lineage. Phylogenetic analyses revealed that the NPSR is most closely related to the invertebrate cardioacceleratory peptide receptor (CCAPR) and the group of vasopressin-like receptors. Gene structure features were congruent with the phylogenetic clustering and supported the orthology of NPSR to the invertebrate NPSR-like and CCAPR. A site-specific analysis between the vertebrate NPSR and the well studied paralogous vasopressin-like receptor subtypes revealed several putative amino acid sites that may account for the observed functional divergence between them. The data can facilitate experimental studies aiming at deciphering the common features as well as those related to ligand binding and signal transduction processes specific to the NPSR
Recommended from our members
Characterization of HIV seroconverters in a TDF/FTC PrEP study: HPTN 067/ADAPT
Background: HPTN 067/ADAPT evaluated tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) pre-exposure prophylaxis (PrEP) in women (South Africa) and men who have sex with men (Thailand, US). Participants received once-weekly directly observed TDF/FTC (DOT), and were then randomized to daily, time-driven, or event-driven PrEP. This report describes characterization of 12 HIV seroconversion events in this trial.
Methods: HIV rapid testing was performed at study sites. Retrospective testing included: 4th generation assays; HIV RNA testing; Western blot; an HIV-1/2 discriminatory assay; resistance testing; and antiretroviral (ARV) drug testing.
Results: Six of the 12 seroconverters received TDF/FTC in the DOT phase, but were not randomized (3 were acutely infected at enrollment; 2 were infected during the DOT phase; one was not randomized due to pregnancy). One of the six randomized participants had acute infection at randomization but was not diagnosed for 3β4 months because HIV rapid tests were non-reactive; continued daily PrEP use was associated with false-negative antibody tests and low HIV RNA levels. The five participants infected after randomization included four with low adherence to the PrEP regimen, and one who reported a 7-day period without dosing prior to infection. Three participants had TDF/FTC resistance (M184I, K65R), including two who received only four once-weekly TDF/FTC doses; most TDF/FTC mutations were detected by next generation sequencing only.
Conclusions: In HPTN 067/ADAPT, participants who acquired HIV infection had infrequent PrEP dosing or low/suboptimal adherence. Sensitive assays improved detection of HIV infection and drug resistance. Drug resistance was observed with limited PrEP exposure
- β¦