160 research outputs found

    Phenotypic consequences of somatic mutations in the ataxia-telangiectasia mutated gene in non-small cell lung cancer

    Get PDF
    Mutations in the Ataxia-telangiectasia mutated (ATM) gene are frequently found in human cancers, including non-small cell lung cancer (NSCLC). Loss of ATM function confers sensitivity to ionising radiation (IR) and topoisomerase inhibitors and may thus define a subset of cancer patients that could get increased benefit from these therapies. In this study, we evaluated the phenotypic consequences of ATM missense changes reported in seven NSCLC cell lines with regard to radiosensitivity and functionality of ATM signalling. Our data demonstrate that only 2/7 NSCLC cell lines (H1395 and H23) harbouring ATM missense mutations show a functional impairment of ATM signalling following IR-exposure. In these two cell lines, the missense mutations caused a significant reduction in ATM protein levels, impairment of ATM signalling and marked radiosensitivity. Of note, only cell lines with homozygous mutations in the ATM gene showed significant impairment of ATM function. Based on these observations, we developed an immunohistochemistry-based assay to identify patients with loss or reduction of ATM protein expression in a clinical setting. In a set of 137 NSCLC and 154 colorectal cancer specimens we identified tumoral loss of ATM protein expression in 9.5% and 3.9% of cases, respectively, demonstrating the potential utility of this method

    Loss of the Wnt/β-catenin pathway in microglia of the developing brain drives pro-inflammatory activation leading to white matter injury

    Get PDF
    Microglia-mediated neuroinflammation is key in numerous brain diseases including encephalopathy of the preterm born infant. Microglia of the still-developing brain have unique properties but little is known of how they regulate their inflammatory activation. This is important information as every year 9 million preterm born infants acquire persisting neurological injuries associated with encephalopathy and we lack strategies to prevent and treat these injuries. Our study of activation state regulators in immature brain microglia found a robust down-regulation of Wnt/β-catenin pathway receptors, ligands and intracellular signalling members in pro-inflammatory microglia. We undertook our studies initially in a mouse model of microglia-mediated encephalopathy including the clinical hallmarks of oligodendrocyte injury and hypomyelination. We purified microglia from this model and applied a genome-wide transcriptomics analysis validated with quantitative profiling. We then verified that down-regulation of the Wnt/β-catenin signalling cascade is sufficient and necessary to drive microglia into an oligodendrocyte-damaging phenotype using multiple pharmacological and genetic approaches in vitro and in vivo in mice and in humans and zebrafish. We also demonstrated that genomic variance in the WNT/β-catenin pathway is associated with the anatomical connectivity phenotype of the human preterm born infant. This integrated analysis of genomics and connectivity, as a surrogate for oligodendrocyte function/myelination, is agnostic to cell type. However, this data indicates that the WNT pathway is relevant to human brain injury and specifically that WNT variants may be useful clinically for injury stratification and prognosis. Finally, we performed a translational experiment using a BBB penetrant microglia-specific targeting 3DNA nanocarrier to deliver a Wnt agonist specifically and directly to microglia in vivo. Increasing the activity of the Wnt/β-catenin pathway specifically in microglia in our model of microglia-mediated encephalopathy was able to reduce microglial pro-inflammatory activation, prevent the typical hypomyelination and also prevent the long-term memory deficit associated with this hypomyelination. In summary, the canonical Wnt/β-catenin pathway regulates microglial activation and up-regulation of this pathway could be a viable neurotherapeutic strategy

    Uncovering three-dimensional gradients in fibrillar orientation in an impact-resistant biological armour

    Get PDF
    The complex hierarchical structure in biological and synthetic fibrous nanocomposites entails considerable difficulties in the interpretation of the crystallographic texture from diffraction data. Here, we present a novel reconstruction method to obtain the 3D distribution of fibres in such systems. An analytical expression is derived for the diffraction intensity from fibres, explaining the azimuthal intensity distribution in terms of the angles of the three dimensional fibre orientation distributions. The telson of stomatopod (mantis shrimp) serves as an example of natural biological armour whose high impact resistance property is believed to arise from the hierarchical organization of alpha chitin nanofibrils into fibres and twisted plywood (Bouligand) structures at the sub-micron and micron scale. Synchrotron microfocus scanning X-ray diffraction data on stomatopod telson were used as a test case to map the 3D fibre orientation across the entire tissue section. The method is applicable to a range of biological and biomimetic structures with graded 3D fibre texture at the sub-micron and micron length scales

    Computational analysis of expression of human embryonic stem cell-associated signatures in tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cancer stem cell model has been proposed based on the linkage between human embryonic stem cells and human cancer cells. However, the evidences supporting the cancer stem cell model remain to be collected. In this study, we extensively examined the expression of human embryonic stem cell-associated signatures including core genes, transcription factors, pathways and microRNAs in various cancers using the computational biology approach.</p> <p>Results</p> <p>We used the class comparison analysis and survival analysis algorithms to identify differentially expressed genes and their associated transcription factors, pathways and microRNAs among normal vs. tumor or good prognosis vs. poor prognosis phenotypes classes based on numerous human cancer gene expression data. We found that most of the human embryonic stem cell- associated signatures were frequently identified in the analysis, suggesting a strong linkage between human embryonic stem cells and cancer cells.</p> <p>Conclusions</p> <p>The present study revealed the close linkage between the human embryonic stem cell associated gene expression profiles and cancer-associated gene expression profiles, and therefore offered an indirect support for the cancer stem cell theory. However, many interest issues remain to be addressed further.</p

    Particulate Fillers in Thermoplastics

    Get PDF
    The characteristics of particulate filled thermoplastics are determined by four factors: component properties, composition, structure and interfacial interactions. The most important filler characteristics are particle size, size distribution, specific surface area and particle shape, while the main matrix property is stiffness. Segregation, aggregation and the orientation of anisotropic particles determine structure. Interfacial interactions lead to the formation of a stiff interphase considerably influencing properties. Interactions are changed by surface modification, which must be always system specific and selected according to its goal. Under the effect of external load inhomogeneous stress distribution develops around heterogeneities, which initiate local micromechanical deformation processes determining the macroscopic properties of the composites
    • …
    corecore