2 research outputs found

    Cellular assays identify barriers impeding iron-sulfur enzyme activity in a non-native prokaryotic host

    No full text
    International audienceIron-sulfur (Fe-S) clusters are ancient and ubiquitous protein cofactors and play irreplaceable roles in many metabolic and regulatory processes. Fe-S clusters are built and distributed to Fe-S enzymes by dedicated protein networks. The core components of these networks are widely conserved and highly versatile. However, Fe-S proteins and enzymes are often inactive outside their native host species. We sought to systematically investigate the compatibility of Fe-S networks with non-native Fe-S enzymes. By using collections of Fe-S enzyme orthologs representative of the entire range of prokaryotic diversity, we uncovered a striking correlation between phylogenetic distance and probability of functional expression. Moreover, coexpression of a heterologous Fe-S biogenesis pathway increases the phylogenetic range of orthologs that can be supported by the foreign host. We also find that Fe-S enzymes that require specific electron carrier proteins are rarely functionally expressed unless their taxon-specific reducing partners are identified and co-expressed. We demonstrate how these principles can be applied to improve the activity of a radical S-adenosyl methionine(rSAM) enzyme from a Streptomyces antibiotic biosynthesis pathway in Escherichia coli. Our results clarify how oxygen sensitivity and incompatibilities with foreign Fe-S and electron transfer networks each impede heterologous activity. In particular, identifying compatible electron transfer proteins and heterologous Fe-S biogenesis pathways may prove essential for engineering functional Fe-S enzyme-dependent pathways

    Resolving phylogenetic and biochemical barriers to functional expression of heterologous iron-sulphur cluster enzymes

    No full text
    Posté sur bioRxiv le 2 février 2021.International audienceMany of the most promising applications of synthetic biology, including engineering of microbes for renewable chemical production, relies upon the ability of genetically-tractable hosts to express heterologous enzymes from foreign species. While countless methods for facilitating heterologous enzyme expression have been developed, comparable tools for facilitating heterologous enzyme activity are generally lacking. Such tools are needed to fully exploit the biosynthetic potential of the natural world. Here, using the model bacterium Escherichia coli, we investigate why iron-sulphur (Fe-S) enzymes are often inactive when heterologously expressed. By applying a simple growth complementation assay with collections of Fe-S enzyme orthologs from a wide range of prokaryotic diversity, we uncover a striking correlation between phylogenetic distance and probability of functional expression. Moreover, co-expression of a heterologous Fe-S biogenesis pathway increases the phylogenetic range of orthologs that can be functionally expressed. On the other hand, we find that heterologous Fe-S enzymes that require specific electron carrier proteins within their natural host are rarely functionally expressed unless their specific reducing partners are identified and co-expressed. We demonstrate in vitro that such selectivity in part derives from a need for low-potential electron donors. Our results clarify how phylogenetic distance and electron transfer biochemistry each separately impact functional heterologous expression and provide insight into how these barriers can be overcome for successful microbial engineering involving Fe-S enzymes
    corecore