222 research outputs found

    Spin glasses without time-reversal symmetry and the absence of a genuine structural glass transition

    Full text link
    We study the three-spin model and the Ising spin glass in a field using Migdal-Kadanoff approximation. The flows of the couplings and fields indicate no phase transition, but they show even for the three-spin model a slow crossover to the asymptotic high-temperature behaviour for strong values of the couplings. We also evaluated a quantity that is a measure of the degree of non-self-averaging, and we found that it can become large for certain ranges of the parameters and the system sizes. For the spin glass in a field the maximum of non-self-averaging follows for given system size a line that resembles the de Almeida-Thouless line. We conclude that non-self-averaging found in Monte-Carlo simulations cannot be taken as evidence for the existence of a low-temperature phase with replica-symmetry breaking. Models similar to the three-spin model have been extensively discussed in order to provide a description of structural glasses. Their theory at mean-field level resembles the mode-coupling theory of real glasses. At that level the one-step replica symmetry approach breaking predicts two transitions, the first transition being dynamical and the second thermodynamical. Our results suggest that in real finite dimensional glasses there will be no genuine transitions at all, but that some features of mean-field theory could still provide some useful insights.Comment: 11 pages, 11 figure

    The Link Overlap and Finite Size Effects for the 3D Ising Spin Glass

    Full text link
    We study the link overlap between two replicas of an Ising spin glass in three dimensions using the Migdal-Kadanoff approximation and scaling arguments based on the droplet picture. For moderate system sizes, the distribution of the link overlap shows the asymmetric shape and large sample-to-sample variations found in Monte Carlo simulations and usually attributed to replica symmetry breaking. However, the scaling of the width of the distribution, and the link overlap in the presence of a weak coupling between the two replicas are in agreement with the droplet picture. We also discuss why it is impossible to see the asymptotic droplet-like behaviour for moderate system sizes and temperatures not too far below the critical temperature.Comment: 7 pages, 10 figure

    The influence of critical behavior on the spin glass phase

    Full text link
    We have argued in recent papers that Monte Carlo results for the equilibrium properties of the Edwards-Anderson spin glass in three dimensions, which had been interpreted earlier as providing evidence for replica symmetry breaking, can be explained quite simply within the droplet model once finite size effects and proximity to the critical point are taken into account. In this paper, we show that similar considerations are sufficient to explain the Monte Carlo data in four dimensions. In particular, we study the Parisi overlap and the link overlap for the four-dimensional Ising spin glass in the Migdal-Kadanoff approximation. Similar to what is seen in three dimensions, we find that temperatures well below those studied in Monte Carlo simulations have to be reached before the droplet model predictions become apparent. We also show that the double-peak structure of the link overlap distribution function is related to the difference between domain-wall excitations that cross the entire system and droplet excitations that are confined to a smaller region.Comment: 8 pages, 8 figure

    Comment on "General Method to Determine Replica Symmetry Breaking Transitions"

    Full text link
    In a recent letter Marinari et al [Phys. Rev. Lett. 81, 1698 (1998)] introduced a new method to study spin glass transitions and argued that by probing replica symmetry (RS) as opposed to time reversal symmetry (TRS), their method unambiguously shows that replica symmetry breaking (RSB) occurs in short-range spin glasses. In this comment we show that while the new method is indeed useful for studying transitions in systems where TRS is absent (such as the p-spin model studied by them), the conclusion that it shows the existence of RSB in short-range spin glasses is wrong.Comment: 1 page, RevTe

    Reply to "Comment on Evidence for the droplet picture of spin glasses"

    Full text link
    Using Monte Carlo simulations (MCS) and the Migdal-Kadanoff approximation (MKA), Marinari et al. study in their comment on our paper the link overlap between two replicas of a three-dimensional Ising spin glass in the presence of a coupling between the replicas. They claim that the results of the MCS indicate replica symmetry breaking (RSB), while those of the MKA are trivial, and that moderate size lattices display the true low temperature behavior. Here we show that these claims are incorrect, and that the results of MCS and MKA both can be explained within the droplet picture.Comment: 1 page, 1 figur

    The Role of Enterprise Architecture in Ensuring ESG Factors for Sustainability

    Get PDF
    Organisations increasingly recognise the importance of environmental, social, and governance (ESG) aspects for ensuring organisational and global sustainability. Digital transformation is helping organisations to integrate ESG factors into their operations and leverage information technology for economic, social, and environmental benefits. Enterprise architecture (EA) is a strategic approach that integrates business objectives with information technology systems and infrastructure to align with organisational goals and enable effective management, governance, and decision-making. Despite the growing recognition of the significance of ESG factors in promoting sustainable business practices, there are still obstacles to assuring ESG for organisational sustainability. The article explores the key issues in incorporating ESG factors for organisational sustainability and suggests ways EA can help address these challenges. The paper also proposes a conceptual design for the role of EA in ensuring ESG factors for organisational sustainability

    Study of Chirality in the Two-Dimensional XY Spin Glass

    Full text link
    We study the chirality in the Villain form of the XY spin glass in two--dimensions by Monte Carlo simulations. We calculate the chiral-glass correlation length exponent νCG\nu_{\scriptscriptstyle CG} and find that νCG=1.8±0.3\nu_{\scriptscriptstyle CG} = 1.8 \pm 0.3 in reasonable agreement with earlier studies. This indicates that the chiral and phase variables are decoupled on long length scales and diverge as T0T \to 0 with {\em different} exponents, since the spin-glass correlation length exponent was found, in earlier studies, to be about 1.0.Comment: 4 pages. Latex file and 4 embedded postscript files are included in a self-unpacking compressed tar file. A postscript version is available at ftp://chopin.ucsc.edu/pub/xysg.p

    Analysis of the N-terminal region of human MLKL, as well as two distinct MLKL isoforms, reveals new insights into necroptotic cell death

    Get PDF
    © 2016 Authors. The pseudokinase mixed lineage kinase domain-like (MLKL) is an essential effector of necroptotic cell death. Two distinct human MLKL isoforms have previously been reported, but their capacities to trigger cell death have not been compared directly. Herein, we examine these two MLKL isoforms, and further probe the features of the human MLKL N-terminal domain that are required for cell death. Expression in HEK293T cells of the N-terminal 201 amino acids (aa) of human MLKL is sufficient to cause cell death, whereas expression of the first 154 aa is not. Given that aa 1125 are able to initiate necroptosis, our findings indicate that the helix that follows this region restrains necroptotic activity, which is again restored in longer constructs. Furthermore, MLKL isoform 2 (MLKL2), which lacks much of the regulatory pseudokinase domain, is a much more potent inducer of cell death than MLKL isoform 1 (MLKL1) in ectopic expression studies in HEK293T cells. Modelling predicts that a C-terminal helix constrains the activity of MLKL1, but not MLKL2. Although both isoforms are expressed by human monocyte-derived macrophages at the mRNA level, MLKL2 is expressed at much lower levels. We propose that it may have a regulatory role in controlling macrophage survival, either in the steady state or in response to specific stimuli

    Current-voltage scaling of chiral and gauge-glass models of two-dimensional superconductors

    Full text link
    The scaling behavior of the current-voltage characteristics of chiral and gauge glass models of disordered superconductors, are studied numerically, in two dimensions. For both models, the linear resistance is nonzero at finite temperatures and the scaling analysis of the nonlinear resistivity is consistent with a phase transition at T=0 temperature characterized by a diverging correlation length ξTνT\xi \propto T^{-\nu_{T}} and thermal critical exponent νT\nu_{T}. The values of νT\nu_{T}, however, are found to be different for the chiral and gauge glass models, suggesting different universality classes, in contrast to the result obtained recently in three dimensions.Comment: 4 pages, 4 figures (included), to appear in Phys. Rev.

    Modelling Vector Transmission and Epidemiology of Co-Infecting Plant Viruses.

    Get PDF
    Co-infection of plant hosts by two or more viruses is common in agricultural crops and natural plant communities. A variety of models have been used to investigate the dynamics of co-infection which track only the disease status of infected and co-infected plants, and which do not explicitly track the density of inoculative vectors. Much less attention has been paid to the role of vector transmission in co-infection, that is, acquisition and inoculation and their synergistic and antagonistic interactions. In this investigation, a general epidemiological model is formulated for one vector species and one plant species with potential co-infection in the host plant by two viruses. The basic reproduction number provides conditions for successful invasion of a single virus. We derive a new invasion threshold which provides conditions for successful invasion of a second virus. These two thresholds highlight some key epidemiological parameters important in vector transmission. To illustrate the flexibility of our model, we examine numerically two special cases of viral invasion. In the first case, one virus species depends on an autonomous virus for its successful transmission and in the second case, both viruses are unable to invade alone but can co-infect the host plant when prevalence is high
    corecore