11 research outputs found

    Revealing the Wonder of Natural Photonics by Nonlinear Optics

    Get PDF
    Nano-optics explores linear and nonlinear phenomena at the nanoscale to advance fundamental knowledge about materials and their interaction with light in the classical and quantum domains in order to develop new photonics-based technologies. In this perspective article, we review recent progress regarding the application of nonlinear optical methods to reveal the links between photonic structures and functions of natural photonic geometries. Furthermore, nonlinear optics offers a way to unveil and exploit the complexity of the natural world for developing new materials and technologies for the generation, detection, manipulation, and storage of light at the nanoscale, as well as sensing, metrology, and communication

    Linear and nonlinear optical response from Cicadas transparent wings

    Get PDF
    The wings of some insect species are known to fluoresce under illumination by ultraviolet light. Their fluorescence properties are, however, not comprehensively documented. In this presentation, the optical properties of unknown fluorophores naturally occurring within Cicadas transparent wing, were investigated using both linear and nonlinear optical (NLO) methods, including one- and two-photon fluorescence and second harmonic generation (SHG)

    Morphological and Optical Modification of Melanosomes in Fish Integuments upon Oxidation

    Get PDF
    Reactive oxygen species (ROS) such as superoxide radicals O2−, hydroxyl radicals OH−, and hydrogen peroxide H2O2 may have detrimental effects on marine organisms, including their integuments and visual appearances. Although some studies have described the impact of ROS on marine ecosystems and species ecology, the influence on the optical response of the integuments of marine species and on their visual appearances remains unknown. In this article, we used histology and optical characterisation to show, for the first time, that skin melanophores (melanin-containing chromophores) of the coral reef fish, Stegastes apicalis, change their shapes and fluorescent proprieties upon oxidation with H2O2 radicals. Our observations also suggest that pheomelanosomes may occur in fish integuments, where, previously, it was thought that fish melanosomes only contain eumelanin. This investigation relied on light and electron microscopy and steady-state fluorimetry, as well as time-resolved streak imaging systems. We suggest that the changes in the morphological and spectral characteristics of melanophores can be used as a marker of physiological stress induced by environmental factors such as ROS. Moreover, S. apicalis may be used as a potential model for studying the interaction between the surrounding environment and natural organisms in biologically diverse ecosystems, such as the Great Barrier Reef in Australia

    Fluorimetry in the Strong-Coupling Regime: From a Fundamental Perspective to Engineering New Tools for Tracing and Marking Materials and Objects

    No full text
    Under exceptional circumstances, light and molecules bond together, creating new hybrid light–matter states with far-reaching consequences for these strongly coupled entities. The present article describes the quantum-mechanical foundation of strong-coupling and experimental evidence for molding the radiation properties of nanoprobes by strong-coupling. When applied to tracing and marking, the new fluorometry technique proposed here, which harnesses strong-coupling, has a triple advantage compared to its classical counterparts such as DNA tracing. It is fast, and its signal-to-noise ratio can be improved by spectral filtering; moreover, it reveals a specific quantum signature of the strong-coupling, which is extremely difficult to reproduce classically, thereby opening the door to new anti-counterfeiting strategies.</jats:p

    Uncovering Hidden Dynamics of Natural Photonic Structures using Holographic Imaging

    No full text
    In this method, the potential of optics and holography to uncover hidden details of a natural system's dynamical response at the nanoscale is exploited. In the first part, the optical and holographic studies of natural photonic structures are presented as well as conditions for the appearance of the photophoretic effect, namely, the displacement or deformation of a nanostructure due to a light-induced thermal gradient, at the nanoscale. This effect is revealed by real-time digital holographic interferometry monitoring the deformation of scales covering the wings of insects induced by temperature. The link between geometry and nanocorrugation that leads to the emergence of the photophoretic effect is experimentally demonstrated and confirmed. In the second part, it is shown how holography can be potentially used to uncover hidden details in the chemical system with nonlinear dynamics, such as the phase transition phenomenon that occurs in complex oscillatory Briggs-Rauscher (BR) reaction. The presented potential of holography at the nanoscale could open enormous possibilities for controlling and molding the photophoretic effect and pattern formation for various applications such as particle trapping and levitation, including the movement of unburnt hydrocarbons in the atmosphere and separation of different aerosols, decomposition of microplastics and fractionation of particles in general, and assessment of temperature and thermal conductivity of micron-size fuel particles

    Spontaneous Symmetry Breaking:The Case of Crazy Clock and Beyond

    Get PDF
    In this account, we describe the crazy-clock phenomenon involving the state I (low iodide and iodine concentration) to state II (high iodide and iodine concentration with new iodine phase) transition after a Briggs-Rauscher (BR) oscillatory process. While the BR crazy-clock phenomenon is known, it is the first time that crazy-clock behavior is linked and explained with the symmetry-breaking phenomenon, highlighting the entire process in a novel way. The presented phenomenon has been thoroughly investigated by running more than 60 experiments, and evaluated by using statistical cluster K-means analysis. The mixing rate, as well as the magnetic bar shape and dimensions, have a strong influence on the transition appearance. Although the transition for both mixing and no-mixing conditions are taking place completely randomly, by using statistical cluster analysis we obtain different numbers of clusters (showing the time-domains where the transition is more likely to occur). In the case of stirring, clusters are more compact and separated, revealed new hidden details regarding the chemical dynamics of nonlinear processes. The significance of the presented results is beyond oscillatory reaction kinetics since the described example belongs to the small class of chemical systems that shows intrinsic randomness in their response and it might be considered as a real example of a classical liquid random number generator

    Surface nanopatterning of Al/Ti multilayer thin films and Al single layer by a low-fluence UV femtosecond laser beam

    No full text
    The effects of UV femtosecond laser beam with 76 MHz repetition rate on two types of thin films on Si substrate - the Al single layer thin film, and the multilayered thin film consisted of five Al/Ti bilayers (total thickness 130 nm) - were studied. The surface modification of the target was done by low fluences and different irradiation times, not exceeding similar to 300s. Nanopatterns in the form of femtosecond-laser induced periodic surface structures (fs-LIPSS) with periodicity of LT 315 nm and height of 45 nm were registered upon irradiation of the thin films. It was shown that: (i) the fs-LIPSS evolve from ruffles similar to high spatial frequency LIPSS (HSFL) into a low spatial frequency LIPSS (LSFL) if a certain threshold of the fluence is met, (ii) the number of LSFL increases with the exposition time and (iii) the LSFL remain stable even after long exposure times. We achieved high-quality highly-controllable fabrication of periodic structures on the surface of nanosized multilayer films with high-repetition-rate low-fluence femtosecond laser pulses. Compared to the Al single layer, the presence of the Ti underlayer in the Al/Ti multilayer thin film enabled more efficient heat transmittance through the Al/Ti interface away from the interaction zone which caused the reduction of the ablation effects leading to the formation of more regular LIPSS. The different outcomes of interactions with multi and single layer thin films lead to the conclusion that the behavior of the LIPSS is due to thin film structure. (C) 2014 Elsevier B.V. All rights reserved
    corecore