52 research outputs found

    Stroboscopic wave packet description of time-dependent currents through ring-shaped nanostructures

    Full text link
    We present an implementation of a new method for explicit simulations of time-dependent electric currents through nanojunctions. The method is based on unitary propagation of stroboscopic wave packet states and is designed to treat open systems with fluctuating number of electrons while preserving full quantum coherence throughout the whole infinite system. We demonstrate the performance of the method on a model system consisting of a ring-shaped nanojunction with two semi-infinite tight-binding leads. Time-dependent electron current responses to abrupt bias turn-on or gate potential switching are computed for several ring configurations and ring-leads coupling parameters. The found current-carrying stationary states agree well with the predictions of the Landauer formula. As examples of genuinely time-dependent process we explore the presence of circulating currents in the rings in transient regimes and the effect of a time-dependent gate potential.Comment: corrections of typos compared to the previous versio

    Edge-induced spin polarization in two-dimensional electron gas

    Get PDF
    We characterize the role of the spin-orbit coupling between electrons and the confining potential of the edge in nonequilibrium two-dimensional homogeneous electronic gas. We derive a simple analytical result for the magnitude of the current-induced spin polarization at the edge and prove that it is independent of the details of the confinement edge potential and the electronic density within realistic values of the parameters of the considered models. While the amplitude of the spin accumulation is comparable to the experimental values of extrinsic spin-Hall effect in similar samples, the spatial extent of edge-induced effect is restricted to the distances on the order of Fermi wavelength (similar to 10 nm)

    Stroboscopic wave-packet description of nonequilibrium many-electron problems

    Get PDF
    We introduce the construction of an orthogonal wave-packet basis set, using the concept of stroboscopic time propagation, tailored to the efficient description of nonequilibrium extended electronic systems. Thanks to three desirable properties of this basis, significant insight is provided into nonequilibrium processes (both time-dependent and steady-state), and reliable physical estimates of various many-electron quantities such as density, current, and spin polarization can be obtained. Use of the wave-packet basis provides new results for time-dependent switching-on of the bias in quantum transport, and for current-induced spin accumulation at the edge of a 2D doped semiconductor caused by edge-induced spin-orbit interaction

    Quantum conductance of homogeneous and inhomogeneous interacting electron systems

    Get PDF
    We obtain the conductance of a system of electrons connected to leads, within time-dependent density-functional theory, using a direct relation between the conductance and the density response function. Corrections to the non-interacting conductance appear as a consequence of the functional form of the exchange-correlation kernel at small frequencies and wavevectors. The simple adiabatic local-density approximation and non-local density-terms in the kernel both give rise to significant corrections in general. In the homogeneous electron gas, the former correction remains significant, and leads to a failure of linear-response theory for densities below a critical value.Comment: for resolution of the here published results see Phys. Rev. B 76, 125433 (2007

    Comment on "Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems"

    Get PDF
    In a recent paper Sai et al. [1] identified a correction R^{dyn}totheDCconductanceofnanoscalejunctionsarisingfromdynamicalexchange−correlation(XC)effectswithintime−dependentdensityfunctionaltheory.Thisquantitycontributestothetotalresistancethrough to the DC conductance of nanoscale junctions arising from dynamical exchange-correlation (XC) effects within time-dependent density functional theory. This quantity contributes to the total resistance through R=R_{s}+R^{dyn}where where R_{s}istheresistanceevaluatedintheabsenceofdynamical is the resistance evaluated in the absence of dynamical XCeffects.InthisCommentweshowthatthenumericalestimationof effects. In this Comment we show that the numerical estimation of R^{dyn}$ in example systems of the type they considered should be considerably reduced, once a more appropriate form for the shear electron viscosity ¿ is used

    Current-constraining variational approaches to quantum transport

    Get PDF
    Presently, the main methods for describing a nonequilibrium charge-transporting steady state are based on time-evolving it from the initial zero-current situation. An alternative class of theories would give the statistical nonequilibrium density operator from principles of statistical mechanics, in a spirit close to Gibbs ensembles for equilibrium systems, leading to a variational principle for the nonequilibrium steady state. We discuss the existing attempts to achieve this using the maximum entropy principle based on constraining the average current. We show that the current-constrained theories result in a zero-induced drop in electrostatic potential, so that such ensembles cannot correspond to the time-evolved density matrix, unless left- and right-going scattering states are mutually incoherent

    Self-interaction in Green's-function theory of the hydrogen atom

    Get PDF
    Atomic hydrogen provides a unique test case for computational electronic structure methods, since its electronic excitation energies are known analytically. With only one electron, hydrogen contains no electronic correlation and is therefore particularly susceptible to spurious self-interaction errors introduced by certain computational methods. In this paper we focus on many-body perturbation-theory (MBPT) in Hedin's GW approximation. While the Hartree-Fock and the exact MBPT self-energy are free of self-interaction, the correlation part of the GW self-energy does not have this property. Here we use atomic hydrogen as a benchmark system for GW and show that the self-interaction part of the GW self-energy, while non-zero, is small. The effect of calculating the GW self-energy from exact wavefunctions and eigenvalues, as distinct from those from the local-density approximation, is also illuminating
    • …
    corecore