14 research outputs found

    Intracellular Hyper-Acidification Potentiated by Hydrogen Sulfide Mediates Invasive and Therapy Resistant Cancer Cell Death

    No full text
    Slow and continuous release of H2S by GYY4137 has previously been demonstrated to kill cancer cells by increasing glycolysis and impairing anion exchanger and sodium/proton exchanger activity. This action is specific for cancer cells. The resulting lactate overproduction and defective pH homeostasis bring about intracellular acidification-induced cancer cell death. The present study investigated the potency of H2S released by GYY4137 against invasive and radio- as well as chemo-resistant cancers, known to be glycolytically active. We characterized and utilized cancer cell line pairs of various organ origins, based on their aggressive behaviors, and assessed their response to GYY4137. We compared glycolytic activity, via lactate production, and intracellular pH of each cancer cell line pair after exposure to H2S. Invasive and therapy resistant cancers, collectively termed aggressive cancers, are receptive to H2S-mediated cytotoxicity, albeit at a higher concentration of GYY4137 donor. While lactate production was enhanced, intracellular pH of aggressive cancers was only modestly decreased. Inherently, the magnitude of intracellular pH decrease is a key determinant for cancer cell sensitivity to H2S. We demonstrated the utility of coupling GYY4137 with either simvastatin, known to inhibit monocarboxylate transporter 4 (MCT4), or metformin, to further boost glycolysis, in bringing about cell death for aggressive cancers. Simvastatin inhibiting lactate extrusion thence contained excess lactate induced by GYY4137 within intracellular compartment. In contrast, the combined exposure to both GYY4137 and metformin overwhelms cancer cells with lactate over-production exceeding its expulsion rate. Together, GYY4137 and simvastatin or metformin synergize to induce intracellular hyper-acidification-mediated cancer cell death

    Up-regulation and Cytoprotective Role of Epithelial Multidrug Resistance-associated Protein 1 in Inflammatory Bowel Disease

    No full text
    MRP1 (multidrug resistance-associated protein 1) is well known for its role in providing multidrug resistance to cancer cells. In addition, MRP1 has been associated with both pro- and anti-inflammatory functions in nonmalignant cells. The pro- inflammatory function is evident from the fact that MRP1 is a high affinity transporter for cysteinyl-leukotriene C-4 (LTC4), a lipid mediator of inflammation. It remains unexplained, however, why the absence of Mrp1 leads to increased intestinal epithelial damage in mice treated with dextran-sodium sulfate, a model for inflammatory bowel disease (IBD). We found that MRP1 expression is induced in the inflamed intestine of IBD patients, e. g. Crohn disease and ulcerative colitis. Increased MRP1 expression was detected at the basolateral membrane of intestinal epithelial cells. To study a putative role for MRP1 in protecting epithelial cells against inflammatory cues, we manipulated MRP1 levels in human epithelial DLD-1 cells and exposed these cells to cytokines and anti-Fas. Inhibition of MRP1 (by MK571 or RNA interference) resulted in increased cytokine- and anti-Fas-induced apoptosis of DLD-1 cells. Opposite effects, e. g. protection of DLD-1 cells against cytokine- and anti-Fas-induced apoptosis, were observed after recombinant MRP1 overexpression. Inhibition of LTC4 synthesis reduced anti-Fas-induced apoptosis when MRP1 function was blocked, suggesting that LTC4 is the pro- apoptotic compound exported by epithelial MRP1 during inflammation. These data show that MRP1 protects intestinal epithelial cells against inflammation-induced apoptotic cell death and provides a functional role for MRP1 in the inflamed intestinal epithelium of IBD patients

    GAGE mediates radio resistance in cervical cancers via the regulation of chromatin accessibility

    Get PDF
    Radiotherapy (RT) resistance is a major cause of treatment failure in cancers that use definitive RT as their primary treatment modality. This study identifies the cancer/testis (CT) antigen G antigen (GAGE) as a mediator of radio resistance in cervical cancers. Elevated GAGE expression positively associates with de novo RT resistance in clinical samples. GAGE, specifically the GAGE12 protein variant, confers RT resistance through synemin-dependent chromatin localization, promoting the association of histone deacetylase 1/2 (HDAC1/2) to its inhibitor actin. This cumulates to elevated histone 3 lysine 56 acetylation (H3K56Ac) levels, increased chromatin accessibility, and improved DNA repair efficiency. Molecular or pharmacological disruption of the GAGE-associated complex restores radiosensitivity. Molecularly, this study demonstrates the role of GAGE in the regulation of chromatin dynamics. Clinically, this study puts forward the utility of GAGE as a pre-screening biomarker to identify poor responders at initial diagnosis and the therapeutic potential of agents that target GAGE and its associated complex in combination with radiotherapy to improve outcomes

    GAGE mediates radio resistance in cervical cancers via the regulation of chromatin accessibility

    No full text
    Radiotherapy (RT) resistance is a major cause of treatment failure in cancers that use definitive RT as their primary treatment modality. This study identifies the cancer/testis (CT) antigen G antigen (GAGE) as a mediator of radio resistance in cervical cancers. Elevated GAGE expression positively associates with de novo RT resistance in clinical samples. GAGE, specifically the GAGE12 protein variant, confers RT resistance through synemin-dependent chromatin localization, promoting the association of histone deacetylase 1/2 (HDAC1/2) to its inhibitor actin. This cumulates to elevated histone 3 lysine 56 acetylation (H3K56Ac) levels, increased chromatin accessibility, and improved DNA repair efficiency. Molecular or pharmacological disruption of the GAGE-associated complex restores radiosensitivity. Molecularly, this study demonstrates the role of GAGE in the regulation of chromatin dynamics. Clinically, this study puts forward the utility of GAGE as a pre-screening biomarker to identify poor responders at initial diagnosis and the therapeutic potential of agents that target GAGE and its associated complex in combination with radiotherapy to improve outcomes

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore