4 research outputs found

    On Energy Conditions and Stability in Effective Loop Quantum Cosmology

    Full text link
    In isotropic loop quantum cosmology, non-perturbatively modified dynamics of a minimally coupled scalar field violates weak, strong and dominant energy conditions when they are stated in terms of equation of state parameter. The violation of strong energy condition helps to have non-singular evolution by evading singularity theorems thus leading to a generic inflationary phase. However, the violation of weak and dominant energy conditions raises concern, as in general relativity these conditions ensure causality of the system and stability of vacuum via Hawking-Ellis conservation theorem. It is shown here that the non-perturbatively modified kinetic term contributes negative pressure but positive energy density. This crucial feature leads to violation of energy conditions but ensures positivity of energy density, as scalar matter Hamiltonian remains bounded from below. It is also shown that the modified dynamics restricts group velocity for inhomogeneous modes to remain sub-luminal thus ensuring causal propagation across spatial distances.Comment: 29 pages, revtex4; few clarifications, references added, to appear in CQ

    Background independence in a nutshell

    Full text link
    We study how physical information can be extracted from a background independent quantum system. We use an extremely simple `minimalist' system that models a finite region of 3d euclidean quantum spacetime with a single equilateral tetrahedron. We show that the physical information can be expressed as a boundary amplitude. We illustrate how the notions of "evolution" in a boundary proper-time and "vacuum" can be extracted from the background independent dynamics.Comment: 19 pages, 19 figure

    Towards the QFT on Curved Spacetime Limit of QGR. I: A General Scheme

    Get PDF
    In this article and a companion paper we address the question of how one might obtain the semiclassical limit of ordinary matter quantum fields (QFT) propagating on curved spacetimes (CST) from full fledged Quantum General Relativity (QGR), starting from first principles. We stress that we do not claim to have a satisfactory answer to this question, rather our intention is to ignite a discussion by displaying the problems that have to be solved when carrying out such a program. In the present paper we propose a scheme that one might follow in order to arrive at such a limit. We discuss the technical and conceptual problems that arise in doing so and how they can be solved in principle. As to be expected, completely new issues arise due to the fact that QGR is a background independent theory. For instance, fundamentally the notion of a photon involves not only the Maxwell quantum field but also the metric operator - in a sense, there is no photon vacuum state but a "photon vacuum operator"! While in this first paper we focus on conceptual and abstract aspects, for instance the definition of (fundamental) n-particle states (e.g. photons), in the second paper we perform detailed calculations including, among other things, coherent state expectation values and propagation on random lattices. These calculations serve as an illustration of how far one can get with present mathematical techniques. Although they result in detailed predictions for the size of first quantum corrections such as the gamma-ray burst effect, these predictions should not be taken too seriously because a) the calculations are carried out at the kinematical level only and b) while we can classify the amount of freedom in our constructions, the analysis of the physical significance of possible choices has just begun.Comment: LaTeX, 47 p., 3 figure

    Spin Foam Models for Quantum Gravity

    Get PDF
    In this article we review the present status of the spin foam formulation of non-perturbative (background independent) quantum gravity. The article is divided in two parts. In the first part we present a general introduction to the main ideas emphasizing their motivations from various perspectives. Riemannian 3-dimensional gravity is used as a simple example to illustrate conceptual issues and the main goals of the approach. The main features of the various existing models for 4-dimensional gravity are also presented here. We conclude with a discussion of important questions to be addressed in four dimensions (gauge invariance, discretization independence, etc.). In the second part we concentrate on the definition of the Barrett-Crane model. We present the main results obtained in this framework from a critical perspective. Finally we review the combinatorial formulation of spin foam models based on the dual group field theory technology. We present the Barrett-Crane model in this framework and review the finiteness results obtained for both its Riemannian as well as its Lorentzian variants.Comment: Topical review, to appear in CQG. Typos corrected and new references adde
    corecore