41 research outputs found

    SMC SMP 24: A newly radio-detected planetary nebula in the small magellanic cloud

    Full text link
    In this paper we report new radio-continuum detection of an extragalactic PN: SMC SMP 24. We show the radio-continuum image of this PN and present the measured radio data. The newly reduced radio observations are consistent with the multi-wavelength data and derived parameters found in the literature. SMC SMP 24 appear to be a young and compact PN, optically thick at frequencies below 2 GHz.Comment: accepted for publication in Serbian Astronomical Journa

    The H\alpha\ surface brightness - radius relation: a robust statistical distance indicator for planetary nebulae

    Get PDF
    Measuring the distances to Galactic planetary nebulae (PNe) has been an intractable problem for many decades. We have now established a robust optical statistical distance indicator, the Hα\alpha surface brightness- radius or S-r relation, which addresses this problem. We developed this relation from a critically evaluated sample of primary calibrating PNe. The robust nature of the method results from our revised calibrating distances with significantly reduced systematic uncertainties, and the recent availability of high-quality data, including updated nebular diameters and integrated Hα\alpha fluxes. The S-r technique is simple in its application, requiring only an angular size, an integrated H\alpha\ flux, and the reddening to the PN. From these quantities, an intrinsic radius is calculated, which when combined with the angular size, yields the distance directly. Furthermore, we have found that optically thick PNe tend to populate the upper bound of the trend, while optically-thin PNe fall along the lower boundary in the S-r plane. This enables sub-trends to be developed which offer even better precision in the determination of distances, as good as 18 per cent in the case of optically-thin, high-excitation PNe. This is significantly better than any previous statistical indicator. We use this technique to create a catalogue of statistical distances for over 1100 Galactic PNe, the largest such compilation in the literature to date. Finally, in an appendix, we investigate both a set of transitional PNe and a range of PN mimics in the S-r plane, to demonstrate its use as a diagnostic tool. Interestingly, stellar ejecta around massive stars plot on a tight locus in S-r space with the potential to act as a separate distance indicator for these objects.Comment: 49 pages, 17 tables, 8 figures. Published in MNRAS; supplementary tables are included at end of this manuscrip

    Radio-continuum detections of Galactic Planetary Nebulae I. MASH PNe detected in large-scale radio surveys

    Full text link
    We present an updated and newly compiled radio-continuum data-base for MASH PNe detected in the extant large scale "blind" radio-continuum surveys (NVSS, SUMSS/MGPS-2 and PMN) and, for a small number of MASH PNe, observed and detected in targeted radio-continuum observations. We found radio counterparts for approximately 250 MASH PNe. In comparison with the percentage of previously known Galactic PNe detected in the NVSS and MGPS-2 radio-continuum surveys and according to their position on the flux density-angular diameter and the radio brightness temperature evolutionary diagrams we conclude, unsurprisingly, that the MASH sample presents the radio-faint end of the known Galactic PNe population. Also, we present radio-continuum spectral properties of a small sub-sample of MASH PNe located in the strip between declinations -30arcdeg and -40arcdeg, that are detected in both the NVSS and MGPS-2 radio surveys.Comment: 13 figures and 7 tables, accepted for publication in MNRA

    The planetary nebula Abell 48 and its [WN4] central star

    Full text link
    We have conducted a multi-wavelength study of the planetary nebula Abell 48 and give a revised classification of its nucleus as a hydrogen-deficient star of type [WN4]. The surrounding nebula has a morphology typical of PNe and importantly, is not enriched in nitrogen, and thus not the 'peeled atmosphere' of a massive star. Indeed, no WN4 star is known to be surrounded by such a compact nebula. The ionized mass of the nebula is also a powerful discriminant between the low-mass PN and high-mass WR ejecta interpretations. The ionized mass would be impossibly high if a distance corresponding to a Pop I star was adopted, but at a distance of 2 kpc, the mass is quite typical of moderately evolved PNe. At this distance, the ionizing star then has a luminosity of ~5000 Lsolar, again rather typical for a PN central star. We give a brief discussion of the implications of this discovery for the late-stage evolution of intermediate-mass stars.Comment: EUROWD12 Proceeding

    A search for candidate radio supernova remnants in the nearby irregular starburst galaxies NGC 4214 and NGC 4395

    Get PDF
    We present the results of a search for new candidate radio su­pernova remnants (SNRs) in the nearby starburst irregular galaxies NGC 4214 and NGC 4395 using archived radio observations made with the Very Large Array (VLA) at the wavelengths of 3.5 cm, 6 cm and 20 cm for NGC 4214 and 6 cm and 20 cm for NGC 4395. These observations were analyzed as part of our ongoing search for candidate radio SNRs in nearby galaxies: the goal of this search is to prepare a large sample of candidate radio SNRs for the purpose of a robust statistical study of the properties of these sources. Based on our analysis, we have confirmed the nonthermal nature of the discrete radio sources α and β in NGC 4214 and classify these sources as candidate radio SNRs based on their positional coincidences with HII regions in that galaxy. We have measured the flux densities of the two candidate radio SNRs at each wavelength and calculated corresponding spectral indices: we have also measured flux densities of two other discrete radio sources in these galaxies - ρ in NGC 4214 and #3 in NGC 4395 which we suspect to be additional candidate radio SNRs based on their positional coincidences with other HII regions in these galaxies. However, the radio data presently available for these sources can­not confirm such a classification and additional observations are needed. We have also calculated the radio luminosities Lradio at the wavelength of 20 cm for these two candidate radio SNRs as well as the corresponding values for the minimum total energy Emin required to power these radio sources via synchrotron emission and the corresponding magnetic field strength Bmin. We have compared our mean calculated values for these properties with the mean values for populations of candidate radio SNRs in other starburst galaxies: while the values for Lradio and Bmin are roughly comparable to the values seen in other starburst galaxies, the mean value for Emin is higher than the mean value of any other starburst galaxy. Finally, we include these two candidate radio SNRs in a discussion of the Σ − D relation for extragalactic candidate radio SNRs and find that these sources are located on the shallower end of the master Σ − D relation for all extragalactic SNRs as derived by Urošević et al.(2005).published_or_final_versio

    A catalogue of integrated H\alpha\ fluxes for ~1100 Galactic planetary nebulae

    Get PDF
    We present new determinations of the integrated H\alpha\ flux for ~1100 Galactic planetary nebulae measured from the Southern H-Alpha Sky Survey Atlas (SHASSA) and its northern counterpart, the Virginia Tech Spectral-Line Survey (VTSS). This catalogue is the largest homogeneous database of its kind, tripling the number of currently available measurements.Comment: 2 pages, 2 figures, presented at the IAU Symposium "Planetary Nebulae: an Eye to the Future" No. 283, 201

    Planetary nebulae : getting closer to an unbiased binary fraction

    Full text link
    Why 80% of planetary nebulae are not spherical is not yet understood. The Binary Hypothesis states that a companion to the progenitor of the central star of a planetary nebula is required to shape the nebula and even for a planetary nebula to be formed at all. A way to test this hypothesis is to estimate the binary fraction of central stars of planetary nebula and to compare it with the main sequence population. Preliminary results from photometric variability and infrared excess techniques indicate that the binary fraction of central stars of planetary nebulae is higher than that of the putative main sequence progenitor population, implying that PNe could be preferentially formed via a binary channel. This article briefly reviews these results and future studies aiming to refine the binary fraction.Comment: SF2A 2012 proceeding

    Testing the binary hypothesis for the formation and shaping of planetary nebulae

    Full text link
    There is no quantitative theory to explain why a high 80% of all planetary nebulae are non-spherical. The Binary Hypothesis states that a companion to the progenitor of a central star of planetary nebula is required to shape the nebula and even for a planetary nebula to be formed at all. A way to test this hypothesis is to estimate the binary fraction of central stars of planetary nebulae and to compare it with that of the main sequence population. Preliminary results from photometric variability and the infrared excess techniques indicate that the binary fraction of central stars of planetary nebulae is higher than that of the main sequence, implying that PNe could preferentially form via a binary channel. This article briefly reviews these results and current studies aiming to refine the binary fraction.Comment: EUROWD12 Proceeding

    XSHOOTER spectroscopy of the enigmatic planetary nebula Lin49 in the Small Magellanic Cloud

    Get PDF
    We performed a detailed spectroscopic analysis of the fullerene C60-containing planetary nebula (PN) Lin49 in the Small Magellanic Cloud (SMC) using XSHOOTER at the European Southern Observatory Very Large Telescope and the Spitzer/Infrared Spectrograph instruments. We derived nebular abundances for nine elements. We used TLUSTY to derive photospheric parameters for the central star. Lin49 is C-rich and metal-deficient PN (Z ∼ 0.0006). The nebular abundances are in good agreement with asymptotic giant branch nucleosynthesis models for stars with initial mass 1.25 M⊙ and metallicity Z = 0.001. Using the TLUSTY synthetic spectrum of the central star to define the heating and ionizing source, we constructed the photoionization model with CLOUDY that matches the observed spectral energy distribution (SED) and the line fluxes in the UV to far-IR wavelength ranges simultaneously. We could not fit the ∼1–5 μm SED using a model with 0.005–0.1-μm-sized graphite grains and a constant hydrogen density shell owing to the prominent near-IR excess, while at other wavelengths the model fits the observed values reasonably well. We argue that the near-IR excess might indicate either (1) the presence of very small particles in the form of small carbon clusters, small graphite sheets, or fullerene precursors, or (2) the presence of a high-density structure surrounding the central star. We found that SMC C60 PNe show a near-IR excess component to lesser or greater degree. This suggests that these C60 PNe might maintain a structure nearby their central star
    corecore