55 research outputs found
System for automatic proving of some classes of analytic inequalities
U okviru ovog doktorata razvijen je sistem SimTheP (Simple Theorem Prover)
za automatsko dokazivanje nekih klasa analitickih nejednakosti. Kao osnovna klasa
nejednakosti posmatrana je klasa MTP (miksovano trigonometrijsko polinomskih) nejednakosti.
U doktoratu su navedene jos neke klase analitickih nejednakosti na koje
se, uz odred-ene dodatne korake, moze primeniti prikazani sistem. Za potrebe sistema
je kreirano vise originalnih algoritama poput algoritma za trazenje prve pozitivne
nule polinomske funkcije koji je baziran na Sturmovoj teoremi, algoritma za trazenje
najmanjeg odgovarajuceg stepena aproksimacija Tejlorovim razvojima, algoritma sortiranja
aproksimacija i slicnih. Svi algoritmi su prikazani pseudokodom i detaljnim
objasnjenjem slucajeva upotrebe. Rad sistema i koriscenih algoritama ilustrovani su na
vecem broju konkretnih analitickih nejednakosti od kojih su neke bile otvoreni problemi,
a koji su potom reseni metodama sistema i publikovani u renomiranim casopisima.
U okviru doktorata dat je detaljan prikaz oblasti i problematike vezane za dokazivanje
i automatske dokazivace. Razmotreni su osnovni problemi sa kojima se srecu korisnici
vecine automatskih dokazivaca, ali su takod-e analizirani i neki problemi vezani u vezi sa
implementacijom automatskih dokazivaca teorema. Razvijena je jedna implementacija
sistema SimTheP, a u cilju procene performansi ovog sistema urad-ena je uporedna
analiza sa dokazivacem MetiTarski.In this doctoral thesis was developed SimTheP (Simple Theorem Prover), system for
automatic proving of some classes of analytical inequalities. MTP (mixed trigonometric
polynomial) inequalities were considered as basic class of studied inequalities. Some
additional classes of analytical inequalities, on which shown system can be applied with
some additional steps, were presented in this thesis. Several original algorithms, such
as algorithm for seeking rst positive root of polynomial function based on Sturms
theorem, algorithm for seeking smallest appropriate degree of approximation by Taylor
series, algorithm for sorting of approximations and similar others, were created for use
in system. All algorithms were shown by pseudo-code and detailed use case scenarios.
Inner workings of system and application of stated algorithms was illustrated on great
number of concrete analytical inequalities, of which some were open problems later
solved by methods from system and published in renown journals. In this thesis was
also given detailed image of area of research and problematic of theorem proving and
automatic theorem provers. Some basic problems with which users of most automatic
theorem provers deal were considered, but also some problems of implementation of
automatic theorem proving were analysed. One implementation of system SimTheP
was developed, and to assess performance of this system, side by side comparison with
MetiTarski was conducted
The Geometry of Trifocal Curves with Applications in Architecture, Urban and Spatial Planning
In this paper we consider historical genesis of trifocal curve as an optimal
curve for solving the Fermat's problem (minimizing the sum of distance of one
point to three given points in the plane). Trifocal curves are basic plane
geometric forms which appear in location problems. We also analyze algebraic
equation of these curves and some of their applications in architecture,
urbanism and spatial planning. The area and perimeter of trifocal curves are
calculated using a Java application. The Java applet is developed for
determining numerical value for the Fermat-Torricelli-Weber point and optimal
curve with three foci, when starting points are given on an urban map. We also
present an application of trifocal curves through the analysis of one specific
solution in South Stream gas pipeline project.Comment: accepted in SPATIUM International Review, 201
- …