7 research outputs found

    Modeling of Facial Wrinkles for Applications in Computer Vision

    Get PDF
    International audienceAnalysis and modeling of aging human faces have been extensively studied in the past decade for applications in computer vision such as age estimation, age progression and face recognition across aging. Most of this research work is based on facial appearance and facial features such as face shape, geometry, location of landmarks and patch-based texture features. Despite the recent availability of higher resolution, high quality facial images, we do not find much work on the image analysis of local facial features such as wrinkles specifically. For the most part, modeling of facial skin texture, fine lines and wrinkles has been a focus in computer graphics research for photo-realistic rendering applications. In computer vision, very few aging related applications focus on such facial features. Where several survey papers can be found on facial aging analysis in computer vision, this chapter focuses specifically on the analysis of facial wrinkles in the context of several applications. Facial wrinkles can be categorized as subtle discontinuities or cracks in surrounding inhomogeneous skin texture and pose challenges to being detected/localized in images. First, we review commonly used image features to capture the intensity gradients caused by facial wrinkles and then present research in modeling and analysis of facial wrinkles as aging texture or curvilinear objects for different applications. The reviewed applications include localization or detection of wrinkles in facial images , incorporation of wrinkles for more realistic age progression, analysis for age estimation and inpainting/removal of wrinkles for facial retouching

    Organically bound tritium (OBT) for various plants in the vicinity of a continuous atmospheric tritium release

    No full text
    International audienceIn order to quantify tritium impact on the environmental, we studied vegetation continuously exposed to a tritiated atmosphere. We chose lichens as bio-indicators, trees for determination of past tritium releases of the Valduc Centre, and lettuce as edible vegetables for dose calculation regarding neighbourhood. The Pasquill and Doury models from the literature were tested to estimate tritium concentration in the air around vegetable for distance from the release point less than 500 m. The results in tree rings show that organically bound tritium (OBT) concentration was strongly correlated with tritium releases. Using the GASCON model, the modelled variation of OBT concentration with distance was correlated with the measurements. Although lichens are recognized as bio-indicators, our experiments show that they were not convenient for environmental surveys because their age is not definitive. Thus, tritium integration time cannot be precisely determined. Furthermore, their biological metabolism is not well known and tritium concentration appears to be largely dependent on species. An average conversion rate of HTO to OBT was determined for lettuce of about 0.20–0.24% h1. Nevertheless, even if it is equivalent to values already published in the literature for other vegetation, we have shown that this conversion rate, established by weekly samples, varies by a factor of 10 during the different stages of lettuce development, and that its variation is linked to the biomass derivative
    corecore