59 research outputs found

    Reverse transcription-quantitative polymerase chain reaction: description of a RIN-based algorithm for accurate data normalization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the gold standard technique for mRNA quantification, but appropriate normalization is required to obtain reliable data. Normalization to accurately quantitated RNA has been proposed as the most reliable method for in vivo biopsies. However, this approach does not correct differences in RNA integrity.</p> <p>Results</p> <p>In this study, we evaluated the effect of RNA degradation on the quantification of the relative expression of nine genes (<it>18S</it>, <it>ACTB</it>, <it>ATUB</it>, <it>B2M</it>, <it>GAPDH</it>, <it>HPRT</it>, <it>POLR2L</it>, <it>PSMB6</it> and <it>RPLP0</it>) that cover a wide expression spectrum. Our results show that RNA degradation could introduce up to 100% error in gene expression measurements when RT-qPCR data were normalized to total RNA. To achieve greater resolution of small differences in transcript levels in degraded samples, we improved this normalization method by developing a corrective algorithm that compensates for the loss of RNA integrity. This approach allowed us to achieve higher accuracy, since the average error for quantitative measurements was reduced to 8%. Finally, we applied our normalization strategy to the quantification of <it>EGFR</it>, <it>HER2 </it>and <it>HER3 </it>in 104 rectal cancer biopsies. Taken together, our data show that normalization of gene expression measurements by taking into account also RNA degradation allows much more reliable sample comparison.</p> <p>Conclusion</p> <p>We developed a new normalization method of RT-qPCR data that compensates for loss of RNA integrity and therefore allows accurate gene expression quantification in human biopsies.</p

    Breast tumor PDXs are genetically plastic and correspond to a subset of aggressive cancers prone to relapse.

    Get PDF
    The authors wish to thank the personnel of the IRCM animal facility team, the histology (RHEM) platform, the Affymetrix platform of Montpellier and Dr Caroline Mollevi from the Biostatistics platform at ICM for their help in this project. The constant support of ICM and SIRIC Montpellier-Cancer is gratefully acknowledged.International audiencePatient derived xenografts (PDXs) are increasingly appreciated models in cancer research, particularly for preclinical testing, as they reflect the patient's tumor biology more accurately than cancer cell lines. We have established a collection of 20 breast PDXs and characterized their biological and clinical features, as well as their genetic stability. While most PDXs originated from triple negative breast cancers (70%), our collection comprised five ER + cases (25%). Remarkably, the tumors that produced PDXs derived from a subset of aggressive breast cancers with a high proportion of grade 3 tumors and reduced recurrence-free survival. Consistent with this, we found significant differences between the transcriptomic signatures of tumors that produced a PDX (Take) and those that did not (No Take). The PDXs faithfully recapitulate the histological features of their primary tumors, and retain an excellent conservation of molecular classification assignment and Copy Number Change (CNC). Furthermore, the CNC profiles of different PDXs established from the same tumor overlap significantly. However, a small fraction of CNCs in the primary tumor that correspond to oligoclonal events were gradually lost during sequential passaging, suggesting that the PDXs' genetic structure eventually stabilizes around a dominant clone present in the tumor of origin. Finally, de novo occurring genetic events covering up to 9% of the genome were found in only a minority of the PDXs, showing that PDXs have limited genetic instability. These data show that breast cancer PDXs represent a subset of aggressive tumors prone to relapse, and that despite of an excellent conservation of original features, they remain genetically dynamic elements

    Prognostic relevance of nuclear receptors in relation to peritumoral inflammation and tumor infiltration by lymphocytes in breast cancer

    Get PDF
    The prognostic impact of tumor-infiltrating lymphocytes (TILs) is intensively investigated in breast cancer (BC). It is already known that triple-negative breast cancer (TNBC), the most aggressive type of BC, has the highest percentage of TILs. In addition, there is an influence of steroid hormone receptor expression (type I nuclear receptors) on TIL subpopulations in breast cancer tissue. The link between type II nuclear receptors and the level of TILs is unclear. Therefore, the aim of this study was to quantify TILs in a panel of 264 sporadic breast cancers and investigate the correlation of TIL levels with type I and II nuclear receptors expression. TIL levels were significantly increased in the subgroup of TNBC. By contrast, they decreased in estrogen (ER)- or progesterone receptor (PR)-positive cases. Moreover, TIL levels were correlated with type II nuclear receptors, including PPARγ, with a significant inverse correlation of the nuclear form (r = −0.727, p 15% showed a significantly decreased overall survival. In addition, peritumoral inflammation was also quantified in BC tissue samples. In our cohort, although the level of peritumoral inflammation was not correlated with OS, it determined the prognostic value of ER, PR, and PPARγ in BC. Altogether, the present study provides a differentiated overview of the relations between nuclear receptor expression, TIL levels, peritumoral inflammation, and prognosis in BC

    Correlation of the TIGIT-PVR immune checkpoint axis with clinicopathological features in triple-negative breast cancer

    Get PDF
    BackgroundT cell immunoreceptor with Ig and ITIM domains (TIGIT) interacts with poliovirus receptor (PVR) to contribute to cancer immune escape. Recently, TIGIT and PVR have been identified as promising immunotherapy targets. Their gene expression is upregulated in many solid tumors, but their protein expression level is not well documented, particularly in triple negative breast cancer (TNBC), the breast cancer subtype that most benefit from immunotherapy.MethodsTIGIT and PVR expression levels were assessed by immunohistochemistry in 243 surgically resected localized TNBC and then their relationship with clinical-pathological features and clinical outcome was analyzed.ResultsTIGIT expression was observed in immune cells from the tumor microenvironment, whereas PVR was mainly expressed by tumor cells. High TIGIT expression was significantly associated with age (p=0.010), histological grade (p=0.014), non-lobular histology (p=0.024), adjuvant chemotherapy (p=0.006), and various immune cell populations (tumor infiltrating lymphocytes (TILs), CD3+, CD8+, PD-1+ cells; all p&lt;0.0001), PD-L1+ tumor cells (p&lt;0.0001), and PD-L1+ stromal cells (p=0.003). Infiltration by TIGIT+ cells tended to be higher in non-molecular apocrine tumors (p=0.088). PVR was significantly associated with histological grade (p&lt;0.0001), the basal-like (p=0.003) and non-molecular apocrine phenotypes (p=0.039), high TILs infiltration (p=0.011), CD3+ (p=0.002), CD8+ (p=0.024) T cells, and PD-L1 expression in tumor (p=0.003) and stromal cells (p=0.001). In univariate analysis, only known prognostic factors (age, tumor size, lymph node status, adjuvant chemotherapy, TILs and CD3+ T-cell infiltrate) were significantly associated with relapse-free survival (RFS) and overall survival. High TIGIT and PVR expression levels tended to be associated with longer RFS (p=0.079 and 0.045, respectively). The analysis that included only non-molecular apocrine TNBC revealed longer RFS for tumors that strongly expressed TIGIT or PVR (p=0.025 for TIGIT and 0.032 for PVR).ConclusionsThese results indicated that in TNBC, TIGIT+ cells can easily interact with PVR to exert their inhibitory effects. Their wide expression in TNBC and their association with other immune checkpoint components suggest the therapeutic interest of the TIGIT-PVR axis

    Assessment of epidermal growth factor receptor (EGFR) expression in primary colorectal carcinomas and their related metastases on tissue sections and tissue microarray

    Get PDF
    Metastatic colorectal carcinomas (CRC) resistant to chemotherapy may benefit from targeting monoclonal therapy cetuximab when they express the epidermal growth factor receptor (EGFR). Because of its clinical implications, we studied EGFR expression by immunohistochemistry on tissue sections of primary CRC (n=32) and their related metastases (n=53). A tissue microarray (TMA) was generated from the same paraffin blocks to determine whether this technique could be used for EGFR screening in CRC. On tissue sections, 84% of the primary CRC and 94% of the metastases were EGFR-positive. When matched, they showed a concordant EGFR-positive status in 78% of the cases. Moreover, staining intensity and extent of EGFR-positive cells in the primary CRC correlated with those observed in the synchronous metastases. On TMA, 65% of the primary CRC, 66% of the metastases, and 43% of the matched primary CRC metastases were EGFR-positive. There was no concordant EGFR status between the primary and the metastatic sites. A strong discrepancy of EGFR status was noted between TMA and tissue sections. In conclusion, EGFR expression measured in tissue sections from primary CRC and their related metastases was found to be similar and frequent, but it was significantly underestimated by the TMA technique

    On the shrinkage during pyrolysis of thin films and bulk components: The case of a hybrid silica gel precursor for SiOC glasses

    No full text
    International audienceThis paper compares the shrinkage during pyrolysis of a gel precursor as thin film and as bulk sample. The hybrid silica gel, precursor for SiOC glasses, contains Si–CH3 and Si–H moieties. The shrinkage of bulk samples has been measured with conventional dilatometry. Shrinkage of thin films has been studied for the first time with in situ dilatometry allowing to measure the thickness and the refractive index during pyrolysis. Thin films shrink more compared to bulk samples and the pyrolytic transformation occurs at lower temperature (100–150 °C) compared to the bulk samples

    CXCR2 Levels Correlate with Immune Infiltration and a Better Prognosis of Triple-Negative Breast Cancers

    No full text
    International audienceChemokines and their receptors are key players in breast cancer progression and outcome. Previous studies have shown that the chemokine receptor CXCR2 was expressed at higher levels by cells of the tumor microenvironment in triple-negative breast cancers (TNBCs). The aim of this study was to focus our attention on a retrospective cohort of 290 TNBC cases and analyze the involvement of CXCR2, CD11b (a marker of granulocytes) and CD66b (a marker of neutrophils) and their link with immune infiltration and immune checkpoint markers. We report that high densities of CXCR2-, CD11b- and CD66b-positive cells were associated with high-grade tumors. Moreover, molecular apocrine TNBCs, defined here as tumors that express both AR and FOXA1 biomarkers, exhibited low levels of CXCR2 and CD11b. High CXCR2 and CD11b levels were correlated with elevated density of tumor-infiltrating lymphocytes (TILs), CD8+ cytotoxic lymphocytes, expression of PD-L1 by tumor and stromal cells and of PD-1 by stromal cells. On the other hand, CD66b levels were associated only with CD8+, stromal PD-L1 and PD-1 expression. In univariate analysis, low levels of CXCR2 were correlated with poor OS and RFS. In multivariate analysis, low levels of CXCR2 were associated with poor OS. Finally, in TNBC treated with adjuvant chemotherapy, CXCR2 density was associated with longer RFS. Overall, our data highlight the potential beneficial association of high levels of CXCR2 with a subgroup of TNBC patients characterized by a better prognosis

    In situ hybridization for the assessment of urokinase plasminogen activator and plasminogen activator inhibitor type‑1 in formalin‑fixed paraffin‑embedded breast cancer specimens

    No full text
    International audienceUrokinase plasminogen activator (uPA) and its inhibitor, plasminogen activator inhibitor type 1 (PAI‑1), have been reported as prognostic and predictive biomarkers in breast cancer, particularly in patients with node‑negative tumors. uPA and PAI‑1 expression levels classify patients into a poor‑prognosis subgroup, requiring adjuvant chemotherapy and a favorable‑prognosis subgroup, which can be considered for de‑escalation. However, the clinical use of these two biomarkers remains limited, since fresh‑frozen/fresh tumor samples are currently required for their quantification. The aim of the present study was to compare PLAU and SERPINE1 mRNA expression levels (corresponding to uPA and PAI‑1 proteins, respectively), assessed using in situ hybridization in 83 formalin‑fixed paraffin‑embedded (FFPE) breast tumor samples, with uPA and PAI‑1 protein expression assessed using immunometric assay with paired fresh‑frozen breast cancer samples. The results from the two methods significantly correlated as regards uPA quantification; however, >30% of the samples were discordant, according to the clinically validated threshold. Concordance between the two analytical methods was less prominent for PAI‑1 protein and SERPINE1 mRNA. Taken together, the results of the present study indicate that although PLAU and SERPINE1 mRNA may be reliably detected in FFPE samples using in situ hybridization, this technology cannot be used as a substitute for the replacement of the immunometric assay‑derived quantification on fresh‑frozen samples

    Prognostic Value of CXCR2 in Breast Cancer

    No full text
    International audienceThe tumor microenvironment appears essential in cancer progression and chemokines are mediators of the communication between cancer cells and stromal cells. We have previously shown that the ligands of the chemokine receptor CXCR2 were expressed at higher levels in triple-negative breast cancers (TNBC). Our hypothesis was that CXCR2 expression could also be altered in breast cancer. Here, we have analyzed the potential role of CXCR2 in breast cancer in a retrospective cohort of 105 breast cancer patients. Expression of CXCR2, CD11b (a marker of granulocytes) and CD66b (a marker of neutrophils) was analyzed by immunohistochemistry on tumor samples. We demonstrated that CXCR2 stained mainly stromal cells and in particular neutrophils. CXCR2, CD11b and CD66b expression were correlated with high grade breast cancers. Moreover, TNBC displayed a higher expression of CXCR2, CD11b and CD66b than hormone receptor positive or Her2 positive tumors. High levels of CXCR2 and CD11b, but not CD66b, were associated with a higher infiltration of T lymphocytes and B lymphocytes. We also observed a correlation between CXCR2 and AP-1 activity. In univariate analyses, CXCR2, but not CD11b or CD66b, was associated with a lower risk of relapse; CXCR2 remained significant in multivariate analysis. Our data suggest that CXCR2 is a stromal marker of TNBC. However, higher levels of CXCR2 predicted a lower risk of relapse

    Immunohistochemical staining for p16 and BRAFV600E is useful to distinguish between sporadic and hereditary (Lynch syndrome-related) microsatellite instable colorectal carcinomas

    No full text
    International audienceDNA mismatch repair (MMR) protein analysis by immunohistochemistry (IHC) can identify colorectal cancer (CRC) with microsatellite instability (MSI). As MLH1-deficient CRC can be hereditary or sporadic, markers to distinguish between them are needed. MLH1 promoter methylation assay is the reference method; however, sometimes, it is challenging on formalin-fixed paraffin-embedded tissue samples. We assessed by IHC the expression of BRAFV600E, p16, MGMT, and CDX2 in 55 MLH1-deficient MSI CRC samples (of which 8 had a germline MLH1 mutation) to determine whether this panel differentiates between sporadic and hereditary CRCs. We also analyzed MLH1 promoter methylation by methylation-specific PCR and pyrosequencing and BRAF status by genotyping. None of the hereditary CRCs showed MLH1 methylation, BRAF mutation, BRAFV600E-positive immunostaining, or loss of p16 expression. We detected MLH1 promoter methylation in 67 % and a BRAF mutation in 42 % of CRC, all showing MLH1 promoter methylation. BRAFV600E IHC and BRAF genotyping gave concordant results in all but two samples. Loss of expression of p16 was found in 30 % of CRC with methylation of the MLH1 promoter, but its expression was retained in all non-methylated and part of MLH1-methylated tumors (100 % specificity, 30 % sensitivity). CDX2 and MGMT expression was not associated with MLH1 status. Thus, BRAFV600E and p16 IHC may help in differentiating sporadic from hereditary MLH1-deficient CRC with MSI. Specifically, p16 IHC might be used as a surrogate marker for MLH1 promoter methylation, because all p16-negative CRCs displayed MLH1 methylation, whereas hereditary CRCs were all p16-positive
    corecore