20 research outputs found

    Une approche ressourcielle du patrimoine alimentaire

    Get PDF
    Cette contribution a pour but de poser les bases d'une analyse en termes de « ressource » des patrimoines alimentaires, à partir des conceptualisations proposées par l'économie institutionnelle des ressources et l'approche des régimes institutionnels. Nous proposons d'analyser la dynamique des patrimoines alimentaires comme le résultat d'une compétition entre acteurs pour l'usage de services économiques, sensoriels et symboliques fournis par cette ressource patrimoniale

    Deep dive into the chronic toxicity of tyre particle mixtures and their leachates.

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. Data Availability: Data will be made available on request.Particles from the tread of vehicle tyres are a global pollutant, which are emitted into the environment at an approximate rate of 1.4 kg.year-1 for an average passenger-car. In this study, popular tyre brands were used to generate a tyre tread microparticle mixture. The chronic toxicity of both particles and chemical leachates were compared on a planktonic test species (Daphnia magna). Over 21 days of exposure, pristine tyre tread microparticles were more toxic (LC50 60 mg.L-1) than chemical lechates alone (LC50 542 mg.L-1). Microparticles and leachates showed distinct effects on reproduction and morphological development at environmentally relevant concentrations, with dose-dependent uptake of particles visible in the digestive tract. Chemical characterization of leachates revealed a metal predominance of zinc, titanium, and strontium. Of the numerous organic chemicals present, at least 54 were shared across all 5 tyre brands, with many classified to be very toxic. Our results provide a critically needed information on the toxicity of tyre tread particles and the associated chemicals that leach from them to inform future mitigation measures. We conclude that tyre particles are hazardous pollutants of particular concern that are close to or possibly above chronic environmental safety limits in some locations.Natural Environment Research Council (NERC

    Short-Term Immunotoxic Effects of an Anti-Cancer Drug (Etoposide) on the Freshwater Pondsnail Lymnaea stagnalis

    No full text
    A growing body of evidences indicates the rise in pharmaceutical contamination of aquatic ecosystems [...

    Potentiating effect of graphene nanomaterials on aromatic environmental pollutant-induced cytochrome P450 1A expression in the topminnow fish hepatoma cell line PLHC-1

    No full text
    Graphene and its derivatives are an emerging class of carbon nanomaterial with great potential for a broad range of industrial and consumer applications. However, their increasing production and use is expected to result in release of nano-sized graphene platelets into the environment, where they may interact with chemical pollutants modifying their fate and toxic potential. The objective of this study was to assess whether graphene nanoplatelets can act as vector for aromatic environmental pollutants increasing their cellular uptake and associated hazardous effects in vitro. For this purpose, cell cultures of the topminnow fish (Poeciliopsis lucida) hepatoma cell line PLHC-1 were simultaneously (and successively) exposed to graphene nanoplatelets (graphene oxide (GO) or carboxyl graphene (CXYG)) and an aryl hydrocarbon receptor (AhR) agonist (β-naphthoflavone (β-NF), benzo(k)fluoranthene (BkF) or 3,3',4,4',5,5'-hexachlorobiphenyl (PCB169)). Following exposure cytochrome P450 1A (Cyp1A) induction was assessed by measuring cyp1A mRNA expression levels using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Cyp1A-dependent ethoxyresorufin-O-deethylase (EROD) activity. It was observed that pre- and co-exposure of cells to GO and CXYG nanoplatelets had a potentiating effect on β-NF, BkF, and PCB169-dependent Cyp1A induction suggesting that graphene nanoplatelets increase the effective concentration of AhR agonists by facilitating their passive diffusion into the cells by damaging the cells' plasma membrane and/or by transporting them over the plasma membrane via a Trojan horse-like mechanism. The results demonstrate the existence of combination effects between nanomaterials and environmental pollutants and stress the importance of considering these effects when evaluating their respective hazard. © 2015 Wiley Periodicals, Inc
    corecore