608 research outputs found

    Mg II Absorber Number Density at z~0.05: Implications for Omega_DLA Evolution

    Full text link
    An unbiased sample of 147 quasar/AGN spectra, obtained with the FOS/HST, has been searched for intervening MgII absorbers over the redshift range 0<z<0.15. The total redshift path searched is 18.8, with the survey being 80% complete to a 5-sigma rest-frame equivalent width, W_r(2796), of 0.6 Ang. Main results of this work are: [1] Four systems were found, with a mean redshift of =0.06, yielding a redshift number density dN/dz=0.22(+0.12)(-0.09) for absorbers with W_r(2796)>0.6 Ang. This is consistent with the value expected if these systems do not evolve from higher redshifts (z=2.2). [2] No systems with W_r(2796)<0.6 Ang were found. It is a 2-sigma result to have a null detection of smaller W_r(2796) systems. If this implies a turnover in the low W_r(2796) region of the equivalent width distribution at z~0, then there is at least a 25% reduction in the average galaxy gas cross section from z<0.2 galaxies. [3] These systems have strong FeII absorption and are good candidates for damped Ly-alpha absorbers DLAs (see Rao & Turnshek 2000, ApJS, 130, 1). This translates to a redshift number density of dN/dz=0.08(+0.09)(-0.05) for DLAs at z~0. In tandem with the data analyzed by Rao & Turnshek, these results indicate that the redshift number density of DLAs does not evolve from z~4 to z~0. If the HI mass function does not evolve from z~0.5 to z~0, then the cosmological HI mass density is also deduced to not evolve from z~4 to z~0. These z~0 results for MgII absorption-selected DLAs are at odds with those based upon 21-cm emission from HI galaxies by a factor of five to six.Comment: 23 pages, 7 Figures, accepted to ApJ. Replaced version includes additional figures and tables and substantial modifications to the tex

    Consequences of spectrograph illumination for the accuracy of radial-velocimetry

    Full text link
    For fiber-fed spectrographs with a stable external wavelength source, scrambling properties of optical fibers and, homogeneity and stability of the instrument illumination are important for the accuracy of radial-velocimetry. Optical cylindric fibers are known to have good azimuthal scrambling. In contrast, the radial one is not perfect. In order to improve the scrambling ability of the fiber and to stabilize the illumination, optical double scrambler are usually coupled to the fibers. Despite that, our experience on SOPHIE and HARPS has lead to identified remaining radial-velocity limitations due to the non-uniform illumination of the spectrograph. We conducted tests on SOPHIE with telescope vignetting, seeing variation and centering errors on the fiber entrance. We simulated the light path through the instrument in order to explain the radial velocity variation obtained with our tests. We then identified the illumination stability and uniformity has a critical point for the extremely high-precision radial velocity instruments (ESPRESSO@VLT, CODEX@E-ELT). Tests on square and octagonal section fibers are now under development and SOPHIE will be used as a bench test to validate these new feed optics.Comment: to appear in the Proceedings conference "New Technologies for Probing the Diversity of Brown Dwarfs and Exoplanets", Shanghai, 200

    Analytical Approximations for Calculating the Escape and Absorption of Radiation in Clumpy Dusty Environments

    Get PDF
    We present analytical approximations for calculating the scattering, absorption and escape of nonionizing photons from a spherically symmetric two-phase clumpy medium, with either a central point source of isotropic radiation, a uniform distribution of isotropic emitters, or uniformly illuminated by external sources. The analytical approximations are based on the mega-grains model of two-phase clumpy media, as proposed by Hobson & Padman, combined with escape and absorption probability formulae for homogeneous media. The accuracy of the approximations is examined by comparison with 3D Monte Carlo simulations of radiative transfer, including multiple scattering. Our studies show that the combined mega-grains and escape/absorption probability formulae provide a good approximation of the escaping and absorbed radiation fractions for a wide range of parameters characterizing the medium. A realistic test is performed by modeling the absorption of a starlike source of radiation by interstellar dust in a clumpy medium, and by calculating the resulting equilibrium dust temperatures and infrared emission spectrum of both the clumps and the interclump medium. In particular, we find that the temperature of dust in clumps is lower than in the interclump medium if clumps are optically thick. Comparison with Monte Carlo simulations of radiative transfer in the same environment shows that the analytic model yields a good approximation of dust temperatures and the emerging UV to FIR spectrum of radiation for all three types of source distributions mentioned above. Our analytical model provides a numerically expedient way to estimate radiative transfer in a variety of interstellar conditions and can be applied to a wide range of astrophysical environments, from star forming regions to starburst galaxies.Comment: 55 pages, 27 figures. ApJ 523 (1999), in press. Corrected equations and text so as to be same as ApJ versio

    SOPHIE+: First results of an octagonal-section fiber for high-precision radial velocity measurements

    Full text link
    High-precision spectrographs play a key role in exoplanet searches and Doppler asteroseismology using the radial velocity technique. The 1 m/s level of precision requires very high stability and uniformity of the illumination of the spectrograph. In fiber-fed spectrographs such as SOPHIE, the fiber-link scrambling properties are one of the main conditions for high precision. To significantly improve the radial velocity precision of the SOPHIE spectrograph, which was limited to 5-6 m/s, we implemented a piece of octagonal-section fiber in the fiber link. We present here the scientific validation of the upgrade of this instrument, demonstrating a real improvement. The upgraded instrument, renamed SOPHIE+, reaches radial velocity precision in the range of 1-2 m/s. It is now fully efficient for the detection of low-mass exoplanets down to 5-10 Earth mass and for the identification of acoustic modes down to a few tens of cm/s.Comment: 12 pages, 11 figures, accepted in Astronomy and Astrophysic

    The first radial velocity measurements of a microlensing event: no evidence for the predicted binary

    Full text link
    The gravitational microlensing technique allows the discovery of exoplanets around stars distributed in the disk of the galaxy towards the bulge. However, the alignment of two stars that led to the discovery is unique over the timescale of a human life and cannot be re-observed. Moreover, the target host is often very faint and located in a crowded region. These difficulties hamper and often make impossible the follow-up of the target and study of its possible companions. Gould et al. (2013) predicted the radial-velocity curve of a binary system, OGLE-2011-BLG-0417, discovered and characterised from a microlensing event by Shin et al. (2012). We used the UVES spectrograph mounted at the VLT, ESO to derive precise radial-velocity measurements of OGLE-2011-BLG-0417. To gather high-precision on faint targets of microlensing events, we proposed to use the source star as a reference to measure the lens radial velocities. We obtained ten radial velocities on the putative V=18 lens with a dispersion of ~100 m/s, spread over one year. Our measurements do not confirm the microlensing prediction for this binary system. The most likely scenario is that the assumed V=18 mag lens is actually a blend and not the primary lens that is 2 magnitude fainter. Further observations and analyses are needed to understand the microlensing observation and infer on the nature and characteristics of the lens itself.Comment: submitted on 3rd June 2015 to A&ALette

    The CIV-MgII Kinematics Connection in <z>~0.7 Galaxies

    Full text link
    We have examined Faint Object Spectrograph data from the Hubble Space Telescope Archive for CIV 1548,1550 absorption associated with 40 MgII 2796,2803 absorption-selected galaxies at 0.4 < z < 1.4. We report a strong correlation between MgII kinematics, measured in 6 km/s resolution HIRES/Keck spectra, and W_r(1548); this implies a physical connection between the processes that produce "outlying velocity" MgII clouds and high ionization galactic/halo gas. We found no trend in ionization condition, W_r(1548)/W_r(2796), with galaxy-QSO line-of-sight separation for 13 systems with confirmed associated galaxies, suggesting no obvious ionization gradient with galactocentric distance in these higher redshift galaxies. We find tentative evidence (2-sigma) that W_r(1548)/W_r(2796) is anti-correlated with galaxy color; if further data corroborate this trend, in view of the strong CIV-MgII kinematics correlation, it could imply a connection between stellar populations, star formation episodes, and the kinematics and ionization conditions of halo gas at z~1.Comment: Accepted to Astrophysical Journal Letters; 4 pages; 3 figures; emulateapj.st

    A new analysis of the WASP-3 system: no evidence for an additional companion

    Full text link
    In this work we investigate the problem concerning the presence of additional bodies gravitationally bounded with the WASP-3 system. We present eight new transits of this planet and analyse all the photometric and radial velocity data published so far. We did not observe significant periodicities in the Fourier spectrum of the observed minus calculated (O-C) transit timing and radial velocity diagrams (the highest peak having false-alarm probabilities of 56 per cent and 31 per cent, respectively) or long-term trends. Combining all the available information, we conclude that the radial velocity and transit timing techniques exclude, at 99 per cent confidence limit, any perturber more massive than M \gtrsim 100 M_Earth with periods up to 10 times the period of the inner planet. We also investigate the possible presence of an exomoon on this system and determined that considering the scatter of the O-C transit timing residuals a coplanar exomoon would likely produce detectable transits. This hypothesis is however apparently ruled out by observations conducted by other researchers. In case the orbit of the moon is not coplanar the accuracy of our transit timing and transit duration measurements prevents any significant statement. Interestingly, on the basis of our reanalysis of SOPHIE data we noted that WASP-3 passed from a less active (log R'_hk=-4.95) to a more active (log R'_hk=-4.8) state during the 3 yr monitoring period spanned by the observations. Despite no clear spot crossing has been reported for this system, this analysis claims for a more intensive monitoring of the activity level of this star in order to understand its impact on photometric and radial velocity measurements.Comment: MNRAS accepted (14/08/2012

    The Gravitational Lens Candidate FBQ 1633+3134

    Get PDF
    We present our ground-based optical imaging, spectral analysis, and high resolution radio mapping of the gravitational lens candidate FBQ 1633+3134. This z=1.52, B=17.7 quasar appears double on CCD images with an image separation of 0.66 arcseconds and a flux ratio of ~3:1 across BVRI filters. A single 0.27 mJy radio source is detected at 8.46 GHz, coincident to within an arcsecond of both optical components, but no companion at radio wavelengths is detected down to a flux level of 0.1 mJy (3 sigma). Spectral observations reveal a rich metal-line absorption system consisting of a strong Mg II doublet and associated Fe I and Fe II absorption features, all at an intervening redshift of z=0.684, suggestive of a lensing galaxy. Point spread function subtraction however shows no obvious signs of a third object between the two quasar images, and places a detection limit of I > 23.0 if such an object exists. Although the possibility that FBQ 1633+3134 is a binary quasar cannot be ruled out, the evidence is consistent with it being a single quasar lensed by a faint, metal-rich galaxy.Comment: 24 pages, 5 figures. Accepted by AJ. A calibration error affecting B and V band apparent magnitudes has been corrected. The conclusions of the paper are not change
    • …
    corecore