10 research outputs found

    Cutaneous and oral wound closure in vitro; Role of salivary peptides and cytokines

    Get PDF
    Gibbs, S. [Promotor]Veerman, E.C.I. [Promotor]Bolscher, J.G.M. [Copromotor

    Saliva-Derived Host Defense Peptides Histatin1 and LL-37 Increase Secretion of Antimicrobial Skin and Oral Mucosa Chemokine CCL20 in an IL-1α-Independent Manner

    Get PDF
    Even though skin and oral mucosae are continuously in contact with commensal and opportunistic microorganisms, they generally remain healthy and uninflamed. Host defense peptides (HDPs) make up the body's first line of defense against many invading pathogens and are involved in the orchestration of innate immunity and the inflammatory response. In this study, we investigated the effect of two salivary HDPs, LL-37 and Hst1, on the inflammatory and antimicrobial response by skin and oral mucosa (gingiva) keratinocytes and fibroblasts. The potent antimicrobial chemokine CCL20 was investigated and compared with chemokines CCL2, CXCL1, CXCL8, and CCL27 and proinflammatory cytokines IL-1α and IL-6. Keratinocyte-fibroblast cocultures showed a synergistic increase in CCL20 secretion upon Hst1 and LL-37 exposure compared to monocultures. These cocultures also showed increased IL-6, CXCL1, CXCL8, and CCL2 secretion, which was IL-1α dependent. Secretion of the antimicrobial chemokine CCL20 was clearly IL-1α independent. These results indicate that salivary peptides can stimulate skin as well as gingiva cells to secrete antimicrobial chemokines as part of the hosts' defense to counteract infection

    Autocrine Regulation of Re-Epithelialization After Wounding by Chemokine Receptors CCR1, CCR10, CXCR1, CXCR2, and CXCR3.

    Get PDF
    This study identifies chemokine receptors involved in an autocrine regulation of re-epithelialization after skin tissue damage. We determined which receptors, from a panel of 13, are expressed in healthy human epidermis and which monospecific chemokine ligands, secreted by keratinocytes, were able to stimulate migration and proliferation. A reconstructed epidermis cryo(freeze)-wound model was used to assess chemokine secretion after wounding and the effect of pertussis toxin (chemokine receptor blocker) on re-epithelialization and differentiation. Chemokine receptors CCR1, CCR3, CCR4, CCR6, CCR10, CXCR1, CXCR2, CXCR3, and CXCR4 were expressed in epidermis. No expression of CCR2, CCR5, CCR7, and CCR8 was observed by either immunostaining or flow cytometry. Five chemokine receptors (CCR1, CCR10, CXCR1, CXCR2, and CXCR3) were identified, the corresponding monospecific ligands (CCL14, CCL27, CXCL8, CXCL1, CXCL10, respectively) of which were not only able to stimulate keratinocyte migration and/or proliferation but were also secreted by keratinocytes after introducing cryo-wounds into epidermal equivalents. Blocking of receptor–ligand interactions with pertussis toxin delayed re-epithelialization, but did not influence differentiation (as assessed by formation of basal layer, spinous layer, granular layer, and stratum corneum) after cryo-wounding. Taken together, these results confirm that an autocrine positive-feedback loop of epithelialization exists in order to stimulate wound closure after skin injury

    The influence of chronic wound extracts on inflammatory cytokine and histatin stability

    Get PDF
    Chronic ulcers represent a major health burden in our society. Despite many available therapies, a large number of ulcers do not heal. Protein based therapies fail in part due to proteolytic activity in the chronic wound bed. The aim of this in vitro study was to determine whether typical inflammatory cytokines and human salivary histatins remain stable when incubated with chronic wound extracts. Furthermore we determined whether a short exposure of histatins or cytokines was sufficient to exert long term effects on fibroblast migration. Stability of human recombinant cytokines IL-6 and CXCL8, and histatin variants (Hst1, Hst2, cyclic Hst1, minimal active domain of Hst1) in the presence of chronic wound extracts isolated from non-healing ulcers, was monitored by capillary zone electrophoresis. Migration-stimulating activity was assessed using a dermal fibroblast wound healing scratch assay. Histatins and cytokines stayed stable in saline for > 24h at 37°C, making them ideal as an off-the-shelf product. However, incubation with chronic wound extracts resulted in serious breakdown of Hst1 and Hst2 (~50% in 8h) and to lesser extent cyclic Hst1 and the minimal active domain of Hst1 (~20% in 8h). The cytokines IL-6 and CXCL8 were more stable in chronic wound extracts (~40% degradation in 96h). An initial 8-hour pulse of histatins or cytokines during a 96-hour study period was sufficient to stimulate fibroblast migration equally well as a continuous 96-hour exposure, indicating that they may possibly be used as novel bioactive therapeutics, exerting their activity for up to four days after a single exposure

    Methods to study differences in cell mobility during skin wound healing in vitro

    No full text
    Wound healing events which occur in humans are difficult to study in animals due to differences in skin physiology. Furthermore there are increasing restrictions in Europe for using animals for testing the therapeutic properties of new compounds. Therefore, in line with the 3Rs (reduction, refinement and replacement of test animals), a number of human in vitro models of different levels of complexity have been developed to investigate cell mobility during wound healing. Keratinocyte, melanocyte, fibroblast and endothelial cell mobility are described, since these are the residential cells which are responsible for restoring the main structural features of the skin. A monolayer scratch assay is used to study random fibroblast and endothelial cell migration in response to EGF and bFGF respectively and a chemotactic assay is used to study directional fibroblast migration towards CCL5. In order to study endothelial sprouting in response to bFGF or VEGF, which involves continuous degradation and resynthesis of a 3D matrix, a fibrin gel is used. Human physiologically relevant tissue-engineered skin models are used to investigate expansion of the stratified, differentiated epidermis (keratinocytes and melanocytes) over a fibroblast populated dermis and also to study migration and distribution of fibroblasts into the dermis. Together these skin models provide a platform for testing the mode of action of novel compounds for enhanced and scar free wound healing

    Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells

    No full text
    Oral wounds heal faster and with better scar quality than skin wounds. Deep skin wounds where adipose tissue is exposed, have a greater risk of forming hypertrophic scars. Differences in wound healing and final scar quality might be related to differences in mesenchymal stromal cells (MSC) and their ability to respond to intrinsic (autocrine) and extrinsic signals, such as human salivary histatin, epidermal growth factor, and transforming growth factor beta1. Dermis-, adipose-, and gingiva-derived MSC were compared for their regenerative potential with regards to proliferation, migration, and matrix contraction. Proliferation was assessed by cell counting and migration using a scratch wound assay. Matrix contraction and alpha smooth muscle actin was assessed in MSC populated collagen gels, and also in skin and gingival full thickness tissue engineered equivalents (reconstructed epithelium on MSC populated matrix). Compared to skin-derived MSC, gingiva MSC showed greater proliferation and migration capacity, and less matrix contraction in full thickness tissue equivalents, which may partly explain the superior oral wound healing. Epidermal keratinocytes were required for enhanced adipose MSC matrix contraction and alpha smooth muscle actin expression, and may therefore contribute to adverse scarring in deep cutaneous wounds. Histatin enhanced migration without influencing proliferation or matrix contraction in all three MSC, indicating that salivary peptides may have a beneficial effect on wound closure in general. Transforming growth factor beta1 enhanced contraction and alpha smooth muscle actin expression in all three MSC types when incorporated into collagen gels. Understanding the mechanisms responsible for the superior oral wound healing will aid us to develop advanced strategies for optimal skin regeneration, wound healing and scar formation
    corecore