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This study identifies chemokine receptors involved in an autocrine regulation of re-epithelialization after skin
tissue damage. We determined which receptors, from a panel of 13, are expressed in healthy human epidermis
and which monospecific chemokine ligands, secreted by keratinocytes, were able to stimulate migration and
proliferation. A reconstructed epidermis cryo(freeze)-wound model was used to assess chemokine secretion
after wounding and the effect of pertussis toxin (chemokine receptor blocker) on re-epithelialization
and differentiation. Chemokine receptors CCR1, CCR3, CCR4, CCR6, CCR10, CXCR1, CXCR2, CXCR3, and CXCR4
were expressed in epidermis. No expression of CCR2, CCR5, CCR7, and CCR8 was observed by either
immunostaining or flow cytometry. Five chemokine receptors (CCR1, CCR10, CXCR1, CXCR2, and CXCR3) were
identified, the corresponding monospecific ligands (CCL14, CCL27, CXCL8, CXCL1, CXCL10, respectively) of
which were not only able to stimulate keratinocyte migration and/or proliferation but were also secreted
by keratinocytes after introducing cryo-wounds into epidermal equivalents. Blocking of receptor–ligand
interactions with pertussis toxin delayed re-epithelialization, but did not influence differentiation (as assessed
by formation of basal layer, spinous layer, granular layer, and stratum corneum) after cryo-wounding. Taken
together, these results confirm that an autocrine positive-feedback loop of epithelialization exists in order to
stimulate wound closure after skin injury.
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INTRODUCTION
Chemokines constitute a family of structurally related
chemotactic cytokines. Many chemokines are constitutively
expressed and show increased secretion upon cutaneous
damage. Chemokines were first described to direct migra-
tion of inflammatory cells (neutrophils, macrophages, mono-
cytes, lymphocytes) into the wound bed (Gillitzer and
Goebeler, 2001; Yoshie et al., 2001). However, the presence
of chemokine receptors on skin residential cells (e.g.,
keratinocytes, fibroblasts, endothelial cells) indicates that
chemokines may also contribute to regulation of epitheliali-
zation, granulation tissue formation, angiogenesis, and tissue
remodeling.

Our previous study focused on the role of chemokines in
dermal repair and in particular on mesenchymal stem cells
(Kroeze et al., 2009). This study focuses on epidermal
regeneration. Re-epithelialization occurs from a viable

epidermal progenitor cell pool that resides in the basal
layer of the epidermis and in dermal appendages such as
hair follicles (Clayton et al., 2007; Gurtner et al., 2008).
Re-epithelialization involves keratinocyte migration and
proliferation, followed by differentiation in order to regener-
ate the epidermis during wound closure. Keratinocyte migra-
tion begins 3–6 hours after wounding and proceeds with
proliferation and differentiation (Martin, 1997). Several
hours after the onset of migration, keratinocyte proliferation
is increased distal from the migrating edge (Martin, 1997;
Jacinto et al., 2001). As wound-healing processes are
triggered very early after wounding and before infiltrating
cells enter the wound area, it is possible that keratinocytes
initiate re-epithelialization in an autocrine manner.

Chemokine receptor–ligand interactions have been
described to be involved in re-epithelialization. Steude
et al. (2002) reported in an in vitro skin model that CXCL1
and CXCL8 induce keratinocyte migration by binding to
the receptor CXCR2 (Rennekampf et al., 1997, 2000). In
addition, several other ligand–receptor interactions (CXCL12/
CXCR4, CCL17/CCR4, and CCL27/CCR10) have been
described to be involved in migration and proliferation of
keratinocytes (Florin et al., 2005; Fujimoto et al., 2008).
In vivo results using CXCL11�/� and CXCR3�/� mice
demonstrated a delayed re-epithelialization after wounding,
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which suggested an autocrine regulation of re-epithelializa-
tion (Yates et al., 2008, 2009). Whereas all of these studies
clearly indicate a role for chemokines in re-epithelialization,
until now no distinction has been made between autocrine
and paracrine regulation. As most studies generally associate
chemokine expression with inflammatory cell recruitment,
these studies often suggest paracrine regulation of re-
epithelialization. We suggest that an early autocrine regula-
tion would be favorable as it would result in an immediate
response to tissue damage before infiltrating cells are able to
induce a chemokine cascade and amplified wound-healing
response. Paracrine regulation of re-epithelialization would
be expected to result in a delayed response as the cells would
have to respond to a chemokine gradient originating from
another cell type, e.g., infiltrating cell or fibroblast. By using a
reconstructed epidermis wound-healing model, we were able
to determine whether autocrine chemokine regulation is
involved in re-epithelialization and identify putative chemo-
kines involved.

In this study, we describe chemokine receptor expression
and tissue location in native healthy human epidermis. We
describe which monospecific binding chemokines for these
receptors are secreted by keratinocytes and whether these
same chemokines can stimulate keratinocyte migration,
proliferation, and differentiation. An in vitro reconstructed
epidermal equivalent wound-healing model was used to
determine which chemokines were secreted by keratinocytes
and whether or not the chemokine receptor blocker pertussis
toxin was able to inhibit re-epithelialization. We show
that pertussis toxin is able to inhibit re-epithelialization
by preventing chemokines secreted by epidermal kera-
tinocytes from binding to their receptors. This study identifies
chemokine receptors involved in an autocrine regulation of
re-epithelialization after skin tissue damage.

RESULTS
Chemokine receptor expression on epidermal cells

If autocrine chemokine regulation initiating re-epitheliali-
zation occurs, it would be expected that chemokine
receptors would already be present on the surface of cells
within normal healthy epidermis in order for these cells
to immediately respond to tissue damage without delay.
Therefore, we first determined the tissue location (immuno-
histochemical staining) and cell-surface expression (flow
cytometry) of chemokine receptors in human epidermis
(Figure 1). Chemokine receptors CCR1, CCR3, CCR4,
CCR6, CCR10, CXCR1, CXCR2, CXCR3, and CXCR4 were
expressed in the epidermis (Figure 1, Table 1). Immuno-
histochemical staining occurred throughout the epidermis
for CCR1, CCR4, CXCR1, CXCR2, and CXCR4, in line
with flow cytometry, which showed a similar homogenous
expression for these receptors. CCR10 was also expressed
throughout the epidermis, but flow cytometry identified a
heterogenous intensity of expression of CCR10. Chemokine
receptors CCR3, CCR6, and CXCR3 showed a differential
expression within the epidermis; CCR3 and CCR6 were
expressed predominantly in suprabasal epidermal layers,
whereas CXCR3 was expressed in basal and lower spinous

layers. The heterogenous expression of these receptors was
confirmed by flow cytometry. No expression of CCR2, CCR5,
CCR7, and CCR8 was observed by either immunostaining or
flow cytometry.

Chemokine receptor expression was also studied in
primary cultured keratinocytes, which had been incorporated
into a three-dimensional reconstructed epidermis in vitro
(Figure 1). These epidermal equivalents demonstrated similar
results with regard to chemokine receptor tissue location and
cell-surface expression to that observed in normal human
epidermis. Therefore, the epidermal equivalent closely
resembles in vivo human skin (epidermal tissue architecture
as well as chemokine receptor expression) and ascertains the
use of this model for further experiments.

Chemokine-mediated keratinocyte migration

Re-epithelialization after wounding involves both keratino-
cyte migration and proliferation. To determine whether
the chemokine receptors identified on the cell surface of
epidermal keratinocytes could be involved in epithelializa-
tion, we next determined the effect of monospecific chemo-
kines (ligands that bind to only one receptor; CCL14/CCR1;
CCL20/CCR6; CCL22/CCR4; CCL24/CCR3; CCL27/CCR10;
CXCL1/CXCR2; CXCL10/CXCR3; CXCL12/CXCR4) on
keratinocyte migration in a chemotaxis transwell assay. For
CXCR1, no monospecific chemokine has been identified, and
therefore CXCL8 was used, which also binds to CXCR2.

Three different types of response were observed: (i)
Chemotaxis—a strong dose-dependent increase in migration
of keratinocytes toward CCL14, CCL22, CCL27, CXCL1, and
CXCL10 was observed (Figure 2a). When an equal concen-
tration of each of these chemokines (125 ng ml�1) was placed
in the upper and lower well, no increase in keratinocyte
migration occurred compared with the medium control,
indicating that chemotaxis, rather than chemokinesis, was
involved; (ii) Chemokinesis—a strong dose-dependent
increase in migration of keratinocytes was also observed
toward CXCL8 (Figure 2b). However, the mode of action
was chemokinesis rather than chemotaxis, as equal concen-
trations of CXCL8 (125 ng ml�1) in the upper and lower
compartments still induced a greater migratory response
compared with control; (iii) No effect on migration—CCL20,
CCL24, and CXCL12 were not able to increase cell migration
compared with the medium control (Figure 2c).

Chemokine-mediated keratinocyte proliferation
Having identified the chemokine ligand–receptor pairs
involved in initiating keratinocyte migration, we next deter-
mined which chemokine ligand receptor pairs could stimu-
late keratinocyte proliferation.

A 2-fold increase in proliferation compared with
unsupplemented cultures was observed after exposure of
keratinocytes to CCL24, CXCL1, CXCL8, and CXCL12.
Characteristic peaks in the dose–response data indicated
that an optimal working concentration existed for each
chemokine (Figure 3a). In contrast, CCL14, CCL20, CCL22,
CCL27, and CXCL10 were not able to increase cell prolifera-
tion (Figure 3b).
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Taken together, our results on monospecific binding
chemokines can be subdivided into four groups depending
on how they mediate keratinocyte migration and proliferation:
(i) CXCL1/CXCR2, CXCL8/CXCR1 and CXCL2, and CXCL12/
CXCR4 interactions increase both keratinocyte migration
and proliferation; (ii) CCL14/CCR1, CCL22/CCR4, CCL27/
CCR10, and CXCL10/CXCR3 interactions increase only cell

migration; (iii) CCL24/CCR3 interaction increases only pro-
liferation; and (iv) CCL20/CCR6 has no effect on migration or
proliferation (Table 1). Note that additional nonspecific
chemokines that are able to bind to multiple chemokine
receptors are also summarized in Table 1. However, because
of their nonspecific binding nature, these chemokines were
not used to investigate specific receptor function.

Human skin Epidermal equivalent

Biopsy Epidermal cells Biopsy Epidermal cells
100

0
FL-2 104

100

0
FL-2 104

CCR1

CCR3

CCR4

CCR6

CCR10

CXCR1

CXCR2

CXCR3

CXCR4

C
ou

nt

C
ou

nt

Figure 1. Chemokine receptor expression on human epidermal keratinocytes. Immunohistochemical staining was used to locate chemokine receptors in the

epidermis of human skin and epidermal equivalents. Flow cytometry was used to determine chemokine receptor expression on keratinocyte cell surface.

Tissue sections or keratinocytes isolated from fresh skin tissue or epidermal equivalents were stained with mAbs against the indicated phycoerythrin-labeled

chemokine receptors (thick line in histogram). Each histogram plot contains a phycoerythrin-labeled isotype-matched control (thin line). Data shown are

from one individual donor (skin biopsy/epidermal equivalent and keratinocyte isolation matched) and are representative experiments from three donors

performed in duplicate. Bar¼250 mm.
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Chemokines secreted by keratinocytes in response to wounding

Once we had identified the key chemokine receptors
responsible for initiating proliferation and migration, it was
next important to determine whether the monospecific
ligands for these receptors were indeed secreted by kera-
tinocytes after epidermal wounding. To investigate this, we
used our previously described in vitro epidermal wound-
healing model that consists of reconstructed epidermis
(keratinocytes) grown on human acellular donor dermis
(Breetveld et al., 2006). Because of the air-exposed culture
method, complete epidermal differentiation occurs, resulting
in a basal layer, spinous layer, granular layer, and stratum

corneum similar to native healthy skin. In this model, a full-
thickness standardized wound was introduced by cryofreez-
ing a defined region of the epidermis. Chemokine secretion
before and after wounding was analyzed. Figure 4 shows
that the epidermal equivalent secretes basal levels of CCL14,
CCL20, CCL27, CXCL1, CXCL8, and CXCL10. Increased
secretion of CCL14, CCL27, and CXCL10 (and increased
trend for CCL20, CXCL1, and CXCL8) was observed 24 hours
after wounding. It is noteworthy that these chemokines were
also secreted by excised healthy human skin, confirming
the relevance of the in vitro model (Table 2). Chemokines
CCL22, CCL24, and CXCL12 were not secreted by epidermal

Table 1. Summary of chemokine receptor expression on epidermal keratinocytes and the effect of receptor-specific
chemokines on chemotaxis and proliferation

Chemokine
receptor

Present on
keratinocyte Epidermal location

Receptor-specific
ligand1 Chemotaxis Proliferation

Other chemokine
ligands and their receptors2

CCR1 Yes All epidermal layers CCL14 Yes No CCL3

CCL5

CCL7
CCL8

CCL13

CCL15

CCL16

CCL23

CCR1, 5

CCR1, 3, 4

CCR1, 3
CCR1, 2, 3, 5

CCR1, 2, 3

CCR1, 3

CCR1, 2, 5

CCR1

CCR3 Yes SB CCL24 No Yes CCL5

CCL7

CCL8

CCL11

CCL13

CCL15

CCL24

CCL26

CCL28

CCR1, 3, 4

CCR1, 2, 3

CCR1, 2, 5

CCR3

CCR1, 2, 3

CCR1, 3

CCR3

CCR3

CCR10

CCR4 Yes All epidermal layers CCL22 Yes No CCL5

CCL17

CCR1, 3, 4, 5

CCR4

CCR6 Yes SSU, SG CCL20 No No None

CCR10 Yes All epidermal layers CCL27 Yes No CCL28 CCR3, 10

CXCR1 Yes All epidermal layers CXCL83 Yes4 Yes CXCL6 CXCR1, 2

CXCR2 Yes All epidermal layers CXCL1 Yes Yes CXCL2

CXCL3

CXCL5

CXCL8

CXCR2

CXCR2

CXCR2

CXCR1, 2

CXCR3 Yes BL, SSL CXCL10 Yes No CXCL4

CXCL9

CXCL11

CXCR3

CXCR3

CXCR3

CXCR4 Yes All epidermal layers CXCL12 Yes Yes None

CCR2 No

CCR5 No

CCR7 No

CCR8 No

Abbreviations: BL, basal layer; SB, suprabasal layer; SG, stratum granulosum/granular layer; SSL, lower stratum spinosum/spinous layer; SSU, upper stratum
spinosum/spinous layer.
1Monospecific binding chemokines investigated in this study.
2Data derived from Zlotnik et al. (2006).
3Also a ligand for CXCR2.
4Chemokinesis instead of chemotaxis.
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equivalents either before or after wounding, and CCL24
and CXCL12 were also not secreted at detectable levels
by excised skin (15 pg ml�1 is the detection limit of ELISA).
However, CCL22 was detectable in excised skin.

It is noteworthy that chemokine receptor expression
remained unaltered after wounding as observed by immuno-
histochemical analysis of the migrating epithelial tongue and
flow cytometric analysis of keratinocytes incorporated into a
scratch-wound-healing assay (see Kroeze et al., 2009 for
method; data not shown).

Autocrine regulation of re-epithelialization after wounding
by chemokines

As keratinocytes secrete a number of chemokine ligands
(CCL14, CCL20, CCL27, CXCL1, CXCL8, and CXCL10) that
are able to bind to a single receptor present on their cell
surface, it is most probable that an autocrine regulation of
re-epithelialization occurs. To confirm this, the degree of

re-epithelialization in the wound-healing model was deter-
mined after wounding in the presence or absence of a
chemokine receptor blocker (pertussis toxin). In this model,
the regenerating epidermis forms underneath the dead epi-
dermal tissue (Breetveld et al., 2006). Re-epithelialization
occurs from the wound margins. A representative photograph
of a wound margin is shown in Figure 5a. Incubation
with pertussis toxin showed a dose-dependent inhibition
of re-epithelialization (Figure 5). A 50% decrease in
re-epithelialization of the dermal matrix was observed after
supplementing culture medium with 800 ng ml�1 pertussis
toxin. This finding confirms that chemokines secreted by
keratinocytes do indeed provide an immediate autocrine
feedback loop to initiate wound closure upon tissue injury.

Although re-epithelialization was clearly inhibited by
pertussis toxin, epidermal differentiation was not affected
(Figure 5a). Although the outgrowth of the epidermal tongue
was less, the epidermis which did regenerate showed an
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Figure 2. Migration of keratinocytes upon chemokine exposure. Cultured keratinocytes were seeded into the upper chamber of a chemotaxis transwell

with chemokines in the lower well. As a control, an equal concentration of chemokine (125 ng ml�1) in the upper and lower well distinguished chemotaxis

from chemokinesis (125–125). Keratinocyte migration from the upper to the lower transwell surface is expressed relative to unsupplemented cultures.

Three groups of chemokines could be distinguished based upon their effect on keratinocyte migration: (a) inducing chemotaxis, (b) inducing chemokinesis,

and (c) no effect on keratinocyte migration. Statistical significant differences between supplemented and unsupplemented keratinocytes were calculated using

one-way analysis of variance test, followed by Dunnett’s test. Differences were considered significant when *Po0.05 or **Po0.01.
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equal number of cell layers consisting of a newly formed
basal layer, spinous layer, granular layer, and stratum
corneum similar to control cultures (without pertussis toxin).
Therefore, chemokines did not regulate differentiation in an
autocrine manner.

DISCUSSION
Here we show that an autocrine regulation of re-epitheli-
alization exists, which has a direct effect on stimulating
wound closure. Keratinocytes secrete chemokines, which in
turn are able to bind to receptors already present on their cell
surface. This autocrine loop initiates migration and/or
proliferation, but does not influence epidermal differentiation.

In this study, we have identified five chemokine receptors
(CCR1, CCR10, CXCR1, CXCR2, and CXCR3) that are
expressed on the surface of keratinocytes. Their correspond-
ing ligands (which notably can only bind monospecifically to
these receptors) are not only able to stimulate keratinocyte
migration and/or proliferation, but are also secreted by
keratinocytes. In addition, the chemokine receptor blocker,
pertussis toxin, was able to partially block re-epithelialization
in a fully defined (serum free) in vitro epidermal wound-
healing model consisting only of keratinocytes. Chemokine
receptors were already expressed in normal unwounded
epidermis, allowing for immediate re-epithelialization after
wounding, and were not further upregulated after wounding.
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Figure 3. Proliferation of keratinocytes upon chemokine exposure. Proliferation was assessed using a lactate dehydrogenase assay. Cultured keratinocytes

were cultured in the presence of chemokines. Keratinocyte proliferation is expressed relative to unsupplemented keratinocytes. Two groups of chemokines

could be distinguished based upon their ability to stimulate keratinocyte proliferation. Statistically significant differences between supplemented and

unsupplemented keratinocytes were calculated using one-way analysis of variance test, followed by Dunnett’s test. Differences were considered significant

when *Po0.05 or **Po0.01.
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Taken together, these results confirm that an autocrine
regulation of epithelialization exists in order to stimulate
wound closure after skin injury.

In addition to autocrine regulation, our results also identify
chemokine receptors that may be associated with paracrine
regulation. Three of the nine chemokines in our study,
namely CCL22, CCL24, and CXCL12, were not secreted by
keratinocytes in the wound-healing model. However, their
corresponding receptors (CCR4, CCR3, and CXCR4) were
present on epidermal keratinocytes in vivo, and their ligands
(CCL22, CCL24, and CXCL12) were able to induce migra-
tion and/or proliferation in vitro. In line with these results,
chemokine CCL24 has been reported to be secreted by
dermal fibroblasts and is known to induce keratinocyte
proliferation (Dulkys et al., 2001; Petering et al., 2001).

For CXCL12, we and others have previously shown that
dermal fibroblasts secrete this ligand, which in turn stimu-
lates keratinocyte proliferation via its only receptor CXCR4
(Florin et al., 2005; Ouwehand et al., 2008). With regard to
CCR4, Katou et al. (2001) reported that its ligand CCL22 is
secreted by macrophages and epidermal Langerhans cells.
In addition to CCL22, CCR4 has two other ligands (CCL5
and CCL17; not monospecific). Both of these ligands are
produced by keratinocytes and function as mitogens for
keratinocytes, suggesting that CCR4 may be involved in the
autocrine regulation of keratinocyte migration but via CCL5
and CCL17 rather than via CCL22 (Li et al., 1996; Tsuda
et al., 2003; Fujimoto et al., 2008). As we were only able to
detect secretion of CCL22 from excised skin, it is possible
that the ligands CCL24 and CXCL12 were secreted at very
low amounts, were directly taken up by adjacent cells, or
were bound to the dermis, rather than being released into the
culture supernatant.

We identified one chemokine receptor (CCR6) that was
present on the surface of differentiated keratinocytes in
the upper layers of the epidermis and the ligand (CCL20) of
which did not influence keratinocyte migration or prolifera-
tion in any way, even though its secretion was increased
upon epidermal damage. This finding is in line with others
who have identified CCL20 as a chemokine with antimicro-
bial properties, which is secreted from differentiated kera-
tinocytes (Tohyama et al., 2001; Pernet et al., 2003). It is
therefore possible that CCL20/CCR6 is regulated in an
autocrine manner with its role being to control pathogen
infection after wounding rather than wound closure.

Whereas reports by others have emphasized the important
role of chemokines in wound healing, these reports did
not distinguish between autocrine and paracrine regulation
of re-epithelialization and only focused on one or two
ligand–receptor interactions. For example, reports describe
upregulation of CXCR2 (receptor for CXCL1 and CXCL8)
early after wounding in undifferentiated keratinocytes
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Figure 4. Increased chemokine production by keratinocytes 24 hours after wounding. Culture supernatants were collected after 24 hours from unwounded and

cryo (freeze)-wounded epidermal equivalent cultures. Chemokine secretion was measured by using ELISA. Each bar represents the mean±SEM of three

independent experiments each conducted in duplicate. Statistical significant differences between unwounded and wounded epidermal models were

calculated using one-way analysis of variance test, followed by Dunnett’s test. Differences were considered significant when *Po0.05.

Table 2. Chemokine ligand secretion by excised adult
skin and epidermal equivalents

Chemokine ligand Excised skin Epidermal equivalent

CCL14 112±16.7 pg ml�1 64.9±15.9 pg ml�1

CCL20 3.21±0.58 pg ml�1 10.6±1.42 pg ml�1

CCL27 43.3±16.1 pg ml�1 197±149 pg ml�1

CXCL1 24.9±7.09 ng ml�1 620±305 pg ml�1

CXCL8 105±13.5 ng ml�1 349±205 pg ml�1

CXCL10 787±349 pg ml�1 203±70.5 pg ml�1

CCL22 139±18.1 pg ml�1 ND

CCL24 ND ND

CXCL12 ND ND

Abbreviation: ND, not detectable.
Chemokine amounts were measured by ELISA of culture supernatants
from 4-cm2 excised skin or epidermal equivalents collected over 24 h.
Data represent three different donors each in duplicate (n=3±SEM).
Detection limit of ELISA=15 pg ml�1.
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(Nanney et al., 1995), and mice lacking CXCR2 show
impaired re-epithelialization after wounding (Devalaraja
et al., 2000). In addition, expression of CXCR3 (receptor
for CXCL10) on keratinocytes (Satish et al., 2003) and a
delayed re-epithelialization in mice lacking CXCR3 and
CXCL11 has been reported (Yates et al., 2008, 2009). Low
et al. (2001) described delayed wound healing in MCP1
knockout mice. Fujimoto et al. (2008) described CCR10
expression on epidermal keratinocytes and increased migra-
tion to its recombinant ligand CCL27, and Petering et al.
(2001) described proliferation of human keratinocytes after
stimulation with CCL24, which may be inhibited by anti-
CCR3. Our study clearly distinguishes the autocrine from the
paracrine mechanisms involved in wound healing, and this
information will enable us and others to identify target
molecules and cells for developing new wound-healing
strategies in the future.

Importantly, in our study, we show that multiple chemo-
kine receptors are involved in the autocrine regulation of
re-epithelialization. Therefore, mutation or blocking of a
single receptor would enable a bypass mechanism via the
other receptors to take place, thus ensuring that wound

closure still occurs even if a single gene should malfunction.
Indeed, studies using knockout mouse show delayed wound
healing but not the absence of wound healing (Low et al.,
2001; Yates et al., 2008, 2009).

In conclusion, we show that autocrine regulation of
re-epithelialization occurs via chemokine receptors and
their ligands. Such a response may facilitate early triggering
of wound closure. This early autocrine response is most
probably combined with paracrine responses from infiltrating
cells and neighboring skin cells in order to amplify the
wound-healing cascade.

MATERIALS AND METHODS
Isolation and culture of human keratinocytes and epidermal
equivalents

Human adult skin was obtained from healthy donors (with written

informed consent) undergoing abdominal dermolipectomy and

was used directly after surgery. The VU University medical center

approved the experiments described in this paper. The study was

conducted according to Declaration of Helsinki Principles.

Epidermal cells were isolated from human skin essentially as

described earlier (Waaijman et al., 2010). In brief, epidermis was
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Figure 5. Pertussis toxin inhibits re-epithelialization in an epidermal wound model. Cryo(freeze)-wounds were introduced into epidermal equivalents and the

medium was supplemented with 0, 200, 400, and 800 ng ml�1 pertussis toxin (PTx). Cultures were harvested 12 days later. (a) A representative photograph

showing histology of re-epithelialization in the epidermal equivalent cultured in unsupplemented and supplemented (800 ng ml�1 PTx) medium. a, Unwounded

epidermis; b, newly formed epidermis; arrow, wound margin; bar¼ 250mm. (b) Re-epithelialization was measured as the distance the newly formed epidermis

migrated into the wound bed. Each bar represents the mean±SEM of three independent experiments conducted in duplicate. Statistical significant differences

between supplemented and unsupplemented epidermal equivalents were calculated using one-way analysis of variance test, followed by Dunnett’s test.

Differences were considered significant when **Po0.01.
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isolated from human skin by overnight incubation at 4 1C in dispase

(Roche, Mannheim, Germany). Thereafter, a cell suspension was

made by incubation in trypsin (Gibco, Invitrogen, Paisley, UK) for

15 minutes at 37 1C. Freshly isolated keratinocytes were used for

flow cytometry analysis or further cultured. Subconfluent, first-

passage keratinocytes cultured in keratinocyte medium (DMEM/

Ham’s F12 (3:1), 1% UltroserG, 1% penicillin–streptomycin,

1mmol l�1 hydrocortisone, 1 mmol l�1 isoproterenol, 0.1 mmol l�1

insulin and 2 ng ml�1 keratinocyte growth factor) were used for

experiments to assess keratinocyte migration and proliferation and to

construct the in vitro wound-healing model.

To construct epidermal equivalents for the wound-healing model

and receptor analysis, keratinocytes were seeded onto acellular

de-epidermized dermis or onto 24-mm diameter transwells (pore

size of 0.4 mm; Corning, Corning, NY), respectively (Breetveld et al.,

2006), and cultured submerged for 1 week in keratinocyte medium.

After 1 week, cultures were lifted to the air–liquid interface and

cultured for a further week in DMEM/Ham’s F12 (3:1), 0.2%

UltroserG, 1% penicillin–streptomycin, 1mmol l�1 hydrocortisone,

1mmol l�1 isoproterenol, 0.1 mmol l�1 insulin, 1.0� 10�5 mol l�1

L-carnitine, and 1.0� 10�5 mol l�1
L-serine supplemented with

2 ng ml�1 keratinocyte growth factor and 50 mg ml�1 ascorbic acid.

Thereafter, UltroserG and keratinocyte growth factor were omitted

from the culture medium for 2 days before introducing the cryo-

wound and for the duration of the experiment. The medium was

refreshed twice a week. Unless otherwise stated, all culture additives

were obtained from Sigma (St Louis, MO).

Immunohistochemical analysis

Human skin biopsies and epidermal equivalents were washed in

phosphate-buffered saline, fixed in 4% paraformaldehyde, and

processed for conventional paraffin embedding. Sections (5 mm)

were cut, deparaffinized, and rehydrated in preparation for

immunohistochemical analysis of chemokine receptors. Immuno-

histochemical procedures were performed as described previously

(Kroeze et al., 2009). Photographs were taken with a computer-

assisted microscope (Nikon, Dusseldorf, Germany). Antibodies and

corresponding isotypes used were obtained from (BD Biosciences,

Franklin Lakes, NJ) generated in mice, and reactive with human

unless stated otherwise: CCR1 (53504, IgG2b), CCR2 (48607,

IgG2b), CCR3 (5E8, IgG2b), CCR4 (1G1, IgG1), CCR5 (2D7, IgG2a),

CCR6 (11A9, IgG1), rat anti-human CCR7 (3D12, IgG2a), rat anti-

human CCR8 (191704, IgG2b, R&D Systems, Minneapolis, MN), rat

anti-human CCR10 (314305, IgG2a, R&D Systems), CXCR1 (5A12,

IgG1), CXCR2 (CDw128b, IgG2b), CXCR3 (1C6/cxcr3, IgG1), and

CXCR4 (12G5, IgG2a, R&D Systems). Staining for each receptor was

performed using skin or epidermal equivalents derived from the

same three different donors and in duplicate.

Flow cytometric analysis

Epidermal cells isolated from human epidermis or epidermal

equivalents were examined for cell-surface expression of chemokine

receptors. Cells were incubated for 30 minutes with antibodies,

washed in PBS supplemented with 0.1% BSA and 0.1% sodium azide,

and then resuspended in the same buffer for FACS analysis. Cells were

measured on a FACScan and analyzed with Cell Quest software

(Becton Dickinson Immunocytometry Systems, Mountain View, CA).

Phycoerythrin-labeled antibodies and corresponding isotypes were

the same as those used for immunohistochemistry (see above).

Staining for each receptor was performed using skin or epidermal

equivalents derived from three different donors in duplicate.

Chemotaxis assay

Chemotactic migration of second-passage keratinocytes to chemo-

kine ligands was assessed by the Boyden well chamber technique as

described previously for dermal- and adipose-derived stromal cells

(Kroeze et al., 2009). Before starting the experiment, the transwell

inserts were coated with collagen IV, and keratinocytes were

incubated overnight in serum-free medium (DMEM/Ham’s F12

(3:1), 1% penicillin–streptomycin, 1mmol l�1 hydrocortisone,

1mmol l�1 isoproterenol, and 0.1 mmol l�1 insulin). The cell suspen-

sion (200 ml; 5� 105 per ml in serum-free medium) was loaded into

the upper well of the chamber and allowed to attach for 4 hours.

After 4 hours, different concentrations of chemokine were placed in

the lower well and migration was allowed for 24 hours. The number

of migrated cells was determined by counting the number of nuclei

in a 40-fold magnification area with a computer-assisted fluores-

cence microscope (Nikon, Dusseldorf, Germany). Migration after

exposure to chemokine is given relative to control. Experiments were

conducted using three different donors, each in duplicate.

Proliferation assay

Proliferation of second-passage keratinocytes in response to chemo-

kine ligands was assessed by a modified lactate dehydrogenase assay.

Lactate dehydrogenase released into the media after lysis of the cells

is representative of the total number of cells. Second-passage

keratinocytes were cultured in a collagen IV-coated 48-well plate

in DMEM/Ham’s F12 (3:1), 0.1% UltroserG 1% penicillin–strepto-

mycin, 1mmol l�1 hydrocortisone, 1mmol l�1 isoproterenol, and

0.1mmol l�1 insulin. Subconfluent cell monolayers (75%) were

exposed to different concentrations of chemokine (0–500 ng ml�1

medium) for 24 hours. After incubation, cells were washed with

phospate-buffered saline and lysed with 0.1% triton in PBS for

30 minutes at 4 1C. Lactate dehydrogenase assay mixture was

added to the lysate for 30 minutes at room temperature and then

absorbance was measured at a wavelength of 492 nm. Proliferation

after exposure to chemokines is given relative to control. Experiments

were conducted using three different donors, each in duplicate.

Wound-healing model and chemokine receptor blocking

Full-thickness wounds were made in epidermal equivalents after 1

week of air-exposed culture as described previously (Breetveld et al.,

2006). Wounds were defined as extreme cryo-wounds (freeze-

wounds; 1 mm wide and 2 cm long) resulting in cell death of that

entire region of the epidermis while leaving the rest of the culture

intact and viable. One wound was introduced into each culture.

After wounding, epidermal equivalents were further cultured air-

exposed. Directly after wounding, culture medium was supplemen-

ted with the chemokine receptor inhibitor (pertussis toxin; 0, 200,

400, and 800 ng ml�1) or left unsupplemented.

After 12 days, wound closure (re-epithelialization and differ-

entiation of newly formed epidermis) was analyzed on hematoxylin/

eosin-stained paraffin sections (5 mm) with the aid of a Nikon

microscope and Osteomeasure software (Osteometrics, Atlanta,

GA). Re-epithelialization was measured as the distance that

the newly formed epidermis had migrated into the wound bed.
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Re-epithelialization after exposure to pertussis toxin-supplemented

medium was compared with control unsupplemented medium and

is given relative to control. As re-epithelialization occurred from

both wound margins, duplicate readings were obtained for each

wound and averaged. Differentiation was assessed by histology with

respect to the presence or absence of a basal layer, stratum

spinosum, stratum granulosum, and stratum corneum. Experiments

were conducted using epidermal equivalents constructed from three

different pools of five skin donors in duplicate.

ELISA

Freshly excised adult skin (4 cm2) and epidermal equivalents with

and without full-thickness cryo-wounds (see below) were placed in

transwells (2.4 cm diameter, 3mm pore size) with 1.5 ml culture

medium in the lower compartment for 24 hours (Breetveld et al.,

2006). Culture supernatants were collected and stored at �20 1C for

further analysis. For chemokine quantification in culture super-

natants, ELISA reagents were used in accordance with the

manufacturer’s specifications. CCL14, CCL20, CCL22, CCL27,

CXCL1, CXCL10, and CXCL12 were measured by commercially

available paired ELISA antibodies and recombinant proteins

obtained from R&D System (Minneapolis, MN). For CXCL8/IL-8, a

Pelipair reagent set (CLB, Amsterdam, The Netherlands) was used.

For CCL24, a Quantikine Immunoassay (R&D System) was used.

Statistics

All experiments were conducted in duplicate using skin cells derived

from three different donor pools, each pool derived from three

different donors. When intact freshly excised skin was used, three

different donors were used with an intra-experiment/donor duplicate.

All data are presented as mean±SEM. Differences were evaluated by

one-way analysis of variance post hoc Dunnet’s, using computer

program GraphPad Prism (GraphPad Software, San Diego, CA).
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