83 research outputs found

    Redox Regulation of NLRP3 Inflammasomes: ROS as Trigger or Effector?

    Get PDF
    Significance: Inflammasomes are multiprotein complexes localized within the cytoplasm of the cell that are responsible for the maturation of proinflammatory cytokines such as interleukin-1β (IL-1β) and IL-18, and the activation of a highly inflammatory form of cell death, pyroptosis. In response to infection or cellular stress, inflammasomes are assembled, activated, and involved in host defense and pathophysiology of diseases. Clarification of the molecular mechanisms leading to the activation of this intracellular inflammatory machinery may provide new insights into the concept of inflammation as the root of and route to human diseases. Recent Advances: The activation of inflammasomes, specifically the most fully characterized inflammasome—the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome, is now emerging as a critical molecular mechanism for many degenerative diseases. Several models have been developed to describe how NLRP3 inflammasomes are activated, including K+ efflux, lysosome function, endoplasmic reticulum (ER) stress, intracellular calcium, ubiquitination, microRNAs, and, in particular, reactive oxygen species (ROS). Critical Issues: ROS may serve as a “kindling” or triggering factor to activate NLRP3 inflammasomes as well as “bonfire” or “effector” molecules, resulting in pathological processes. Increasing evidence seeks to understand how this spatiotemporal action of ROS occurs during NLRP3 inflammasome activation, which will be a major focus of this review. Future Directions: It is imperative to know how this dual action of ROS works during NLRP3 inflammation activation on different stimuli and what relevance such spatiotemporal redox regulation of NLRP3 inflammasomes has in cell or organ functions and possible human diseases

    Activation of Nlrp3 Inflammasomes Enhances Macrophage Lipid-Deposition and Migration: Implication of a Novel Role of Inflammasome in Atherogenesis

    Get PDF
    Although Nlrp3 inflammasome activation in macrophages has been shown to be critical for the development of atherosclerosis upon atherogenic stimuli, it remains unknown whether activated Nlrp3 inflammasomes by other non-atherogenic stimuli induce alterations in macrophages that may contribute in the concert with other factors to atherogenesis. Thus, the present study tested the hypothesis that activation of Nlrp3 inflammasomes by ATP, which is a classical non-lipid danger stimulus, enhances the migration of macrophage and increases lipids deposition in macrophages accelerating foam cell formation. We first demonstrated that extracellular ATP (2.5 mM) markedly increased the formation and activation of Nlrp3 inflammasomes in bone marrow macrophages (BMMs) from wild type (Asc+/+) mice resulting in activation of caspase-1 and IL-1β production. In these Asc+/+ macrophages, such stimulation of inflammasomes by non-lipid ATP was similar to those induced by atherogenic stimuli such as cholesterol crystals or 7-ketocholesterol. Both non-lipid and lipid forms of stimuli induced formation and activation of Nlrp3 inflammasomes, which were prevented by Asc gene deletion. Interestingly, Asc+/+ BMMs had dramatic lipids accumulation after stimulation with ATP. Further, we demonstrated that large amount of cholesterol was accumulated in lysosomes of Asc+/+ BMMs when inflammasomes were activated by ATP. Such intracellular and lysosomal lipids deposition was not observed in Asc−/− BMMs and also prevented by caspase-1 inhibitor WEHD. In addition, in vitro and in vivo experiments revealed that migration of Asc+/+ BMMs increased due to stimulation of Nlrp3 inflammasomes, which was markedly attenuated in Asc−/− BMMs. Together, these results suggest that activation of Nlrp3 inflammasomes remarkably increases the susceptibility of macrophages to lipid deposition and their migration ability. Such novel action of inflammasomes may facilitate entry or retention of macrophages into the arterial wall, where they form foam cells and ultimately induce atherosclerosis

    Activation of inflammasomes in podocyte injury of mice on the high fat diet: Effects of ASC gene deletion and silencing

    Get PDF
    AbstractInflammasome, an intracellular inflammatory machinery, has been reported to be involved in a variety of chronic degenerative diseases such as atherosclerosis, autoinflammatory diseases and Alzheimer's disease. The present study hypothesized that the formation and activation of inflammasomes associated with apoptosis associated speck-like protein (ASC) are an important initiating mechanism resulting in obesity-associated podocyte injury and consequent glomerular sclerosis. To test this hypothesis, Asc gene knockout (Asc−/−), wild type (Asc+/+) and intrarenal Asc shRNA-transfected wild type (Asc shRNA) mice were fed a high fat diet (HFD) or normal diet (ND) for 12weeks to produce obesity and associated glomerular injury. Western blot and RT-PCR analyses demonstrated that renal tissue Asc expression was lacking in Asc−/− mice or substantially reduced in Asc shRNA transfected mice compared to Asc+/+ mice. Confocal microscopic and co-immunoprecipitation analysis showed that the HFD enhanced the formation of inflammasome associated with Asc in podocytes as shown by colocalization of Asc with Nod-like receptor protein 3 (Nalp3). This inflammasome complex aggregation was not observed in Asc−/− and local Asc shRNA-transfected mice. The caspase-1 activity, IL-1β production and glomerular damage index (GDI) were also significantly attenuated in Asc−/− and Asc shRNA-transfected mice fed the HFD. This decreased GDI in Asc−/− and Asc shRNA transfected mice on the HFD was accompanied by attenuated proteinuria, albuminuria, foot process effacement of podocytes and loss of podocyte slit diaphragm molecules. In conclusion, activation and formation of inflammasomes in podocytes are importantly implicated in the development of obesity-associated glomerular injury

    Cathepsin B-Mediated NLRP3 Inflammasome Formation and Activation in Angiotensin II -Induced Hypertensive Mice: Role of Macrophage Digestion Dysfunction

    Get PDF
    Background/Aims: Angiotensin II (Ang II) is an octapeptide hormone that plays a significant role in mediating hypertension. Although hypertension is considered a chronic inflammatory disease, the molecular basis of the sterile inflammatory response involved in hypertension remains unclear. Methods: We investigated the role of macrophage NLRP3 inflammasomes in engulfing and digesting microbes, a key macrophage function, and in early onset of hypertension-associated macrophage injury using biochemical analyses, gene silencing, molecular biotechnology, immunofluorescence, and microbiology. Results: Ang II stimulation decreased nitric oxide (NO) release and macrophage digestion in cultured THP-1 cells and markedly increased NLRP3 inflammasome formation and activation. NO release and macrophage digestion were restored by NLRP3 inflammasome inhibition with isoliquiritigenin and gene silencing. This Ang II-induced upregulation of NLRP3 inflammasomes in macrophages was attributed to lysosomal damage and release of cathepsin B. Mechanistically, losartan, a nonpeptide Ang II receptor antagonist, decreased Ang II-induced NLRP3 inflammasome activation, lysosomal membrane permeability, lysosomal cathepsin B release, and macrophage digestion dysfunction. Similarly, Ang II-induced macrophage microbe digestion and NO production, which were blocked by ATI gene silencing. In addition, in vivo experiments showed that the bacteria scavenging function was clearly decreased in macrophages from Ang II-induced hypertensive mice. Conclusion: Angiotensin II enhances lysosomal membrane permeabilization and the consequent release of lysosomal cathepsin B, resulting in activation of the macrophage NLRP3 inflammasome. This may contribute to NO mediation of dysfunction in digesting microbes

    Protection of podocytes from hyperhomocysteinemia-induced injury by deletion of the gp91 phox gene

    Get PDF
    In this study, mice lacking the gp91 phox gene were used to address the role of NADPH oxidase in hyperhomocysteinemia-induced podocyte injury. It was found that a folate-free diet increased plasma homocysteine levels, but failed to increase O 2 •− production in the glomeruli from gp91 phox gene knockout (gp91 These results suggest that the functional integrity of NADPH oxidase is essential for hyperhomocysteinemiainduced podocyte injury and glomerulosclerosis

    Lack of the serum and glucocorticoid-inducible kinase SGK1 attenuates the volume retention after treatment with the PPARγ agonist pioglitazone

    Get PDF
    PPARgamma-agonists enhance insulin sensitivity and improve glucose utilization in diabetic patients. Adverse effects of PPARgamma-agonists include volume retention and edema formation. Recent observations pointed to the ability of PPARgamma agonists to enhance transcription of the serum and glucocorticoid-inducible kinase SGK1, a kinase that is genomically upregulated by mineralocorticoids and stimulates various renal channels and transporters including the renal epithelial Na+ channel ENaC. SGK1 has been proposed to mediate the volume retention after treatment with PPARgamma agonists. To test this hypothesis, food containing the PPARgamma agonist pioglitazone (0.02%, i.e., approximately 25 mg/kg bw/day) was administered to gene-targeted mice lacking SGK1 (sgk1-/-, n=12) and their wild-type littermates (sgk1+/+), n=12). According to in situ hybridization, quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence, treatment with pioglitazone significantly increased renal SGK1 mRNA and protein expression in sgk1+/+ mice. The treatment increased body weight significantly in both, sgk1+/+ mice (+2.2+/-0.3 g) and sgk-/- mice (+1.3+/-0.2 g), and decreased hematocrit significantly in sgk1+/+ mice (-6.5+/-1.0%) and sgk1-/- mice (-3.1+/-0.6%). Both effects were significantly (p<0.05) more pronounced in sgk1+/+ mice. According to Evans Blue distribution, pioglitazone increased plasma volume only in sgk1+/+ mice (from 50.9+/-3.9 to 63.7+/-2.5 microl/g bw) but not in sgk-/- mice (from 46.8+/-3.8 to 48.3+/-5.2 microl/g bw). Pioglitazone decreased aldosterone plasma levels and blood pressure and increased leptin plasma levels in both genotypes. We conclude that SGK1 contributes to but does not fully account for the volume retention during treatment with the PPARgamma agonist pioglitazone

    Possible mechanisms of hypotension produced 70% alcoholic extract of Terminalia arjuna (L.) in anaesthetized dogs

    Get PDF
    BACKGROUND: The bark of Terminalia arjuna L. (Combretaceae) is used in Ayurveda since ancient times for the treatment of cardiac disorders. Previous laboratory investigations have demonstrated the use of the bark in cardiovascular complications. The present study was aimed to find the effect of 70% alcoholic extract of Terminalia arjuna on anaesthetized dog blood pressure and probable site of action. METHODS: Six dogs were anaesthetized with intraperitoneal injection of thiopental sodium and the blood pressure of each dog (n = 6) was measured from the left common carotid artery connected to a mercury manometer on kymograph. The femoral vein was cannulated for administration of drug solutions. The extract of T. arjuna (dissolved in propylene glycol) in the dose range of 5 to 15 mg/kg were administered intravenously in a pilot study and the dose (6 mg/kg) which produced appreciable hypotension was selected for further studies. RESULTS: Intravenous administration of T. arjuna produced dose-dependent hypotension in anaesthetized dogs. The hypotension produced by 6 mg/kg dose of the extract was blocked by propranolol but not by atropine or mepyramine maleate. This indicates that muscarinic or histaminergic mechanisms are not likely to be involved in the hypotension produced by the extract. The blockade by propranolol of the hypotension produced by T. arjuna indicates that the extract might contain active compound(s) possessing adrenergic ß(2)-receptor agonist action and/or that act directly on the heart muscle. CONCLUSION: The results indicated the likely involvement of peripheral mechanism for hypotension produced by the 70% alcoholic extract of Terminalia arjuna and lends support for the claims of its traditional usage in cardiovascular disorders

    Obesity: An overview on its current perspectives and treatment options

    Get PDF
    Obesity is a multi-factorial disorder, which is often associated with many other significant diseases such as diabetes, hypertension and other cardiovascular diseases, osteoarthritis and certain cancers. The management of obesity will therefore require a comprehensive range of strategies focussing on those with existing weight problems and also on those at high risk of developing obesity. Hence, prevention of obesity during childhood should be considered a priority, as there is a risk of persistence to adulthood. This article highlights various preventive aspects and treatment procedures of obesity with special emphasis on the latest research manifolds
    corecore