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Abstract
Background/Aim: Plasma trimethylamine-N-oxide (TMAO), a product of intestinal microbial 
metabolism of dietary phosphatidylcholine has been recently associated with atherosclerosis 
and increased risk of cardiovascular diseases (CVD) in rodents and humans. However, the 
molecular mechanisms of how TMAO induces atherosclerosis and CVD progression are still 
unclear. The present study tested whether TMAO induces NLRP3 inflammasome formation 
and activation and thereby contributes to endothelial injury initiating atherogenesis. 
Methods: Inflammasome formation and activation was determined by confocal microscopy, 
caspase-1 activity was measured by colorimetric assay, IL-1β production was measured 
using ELISA, cell permeability was determined by microplate reader and ZO-1 expression 
was determined by western blot analysis and confocal microscopy. In in vivo experiments, 
TMAO was infused by osmotic pump implantation. Results: TMAO treatment significantly 
increased the colocalization of NLRP3 with Asc or NLRP3 with caspase-1, caspase-1 activity, 
IL-1β production, cell permeability in carotid artery endothelial cells (CAECs) compared to 
control cells. Pretreatment with caspase-1 inhibitor, WEHD or Nlrp3 siRNA abolished the 
TMAO-induced inflammasome formation, activation and cell permeability in these cells. In 
addition, we explored the mechanisms by which TMAO activates NLRP3 inflammasomes. 
TMAO-induced the activation of NLRP3 inflammasomes was associated with both redox 
regulation and lysosomal dysfunction. In animal experiments, direct infusion of TMAO in 
mice with partially ligated carotid artery were found to have increased NLRP3 inflammasome 
formation and IL-1β production in the intima of wild type mice. Conclusion: The formation 
and activation of NLRP3 inflammasomes by TMAO may be an important initiating mechanism 
to turn on the endothelial inflammatory response leading to endothelial dysfunction.
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Introduction

Trimethylamine-N-oxide (TMAO) has been recently highlighted as a potential diagnostic 
marker for cardiovascular diseases (CVD). Recent studies demonstrated that elevated TMAO 
levels in plasma are associated with an increased risk of CVD [1-8]. Circulating TMAO levels 
were found to be elevated in distinct cohorts of cardiac patients with stable heart failure 
and were associated with increased risk for myocardial infarction, stroke and mortality 
[1-5, 9-15]. Plasma TMAO concentrations were found to independently predict coronary 
atherosclerosis and mortality in patients with chronic kidney disease [12]. Increased TMAO 
concentrations have also been associated with impaired glucose tolerance [16], diabetes 
[17]. Recently, TMAO have been associated with greater risk of colorectal and prostate 
cancer. Despite the clear association of TMAO with various chronic diseases, the exact 
mechanism through which TMAO leads to development and progression of various diseases 
is still unclear. 

In this regard, some mechanisms postulated to date are alteration in host sterol/lipid 
metabolic pathway leading to changes in cholesterol transport and excretion [2, 7, 9, 15], 
modulation of platelet responsiveness [8] and activation of profibrotic pathways [3]. Recent 
reports indicated activation of mitogen-activated protein kinase, nuclear factor-kappa B 
signaling cascade and promotion of leukocyte adhesion in vivo [3]. Together, these studies 
suggests that TMAO may trigger endothelial and vascular inflammation, injury and fibrotic 
processes that may contribute to atherogenesis. However, the exact mechanism through 
which TMAO leads to development and progression of atherosclerotic vascular diseases is 
currently unclear.

Nlrp3 inflammasome act as a sensor to detrimental exogenous and endogenous 
substances and switch on both inflammatory and non-inflammatory responses which play 
a vital role in the development of atherosclerosis. Recent studies have indicated that Nlrp3 
inflammasome activation is critical for the development of atherosclerosis upon atherogenic 
stimuli such as cholesterol crystals [18, 19]. However, whether Nlrp3 acts as a sensor to 
the recently recognized proatherogenic metabolite, TMAO, is unknown and the role of 
inflammasome signaling in TMAO-induced atherogenisis has not been explored. Since TMAO 
is a biologically active atherogenic molecule it is important to understand the role of TMAO in 
eliciting inflammatory and non-inflammatory responses via inflammasome activation during 
atherosclerotic vascular disease. The earliest event in the development of atherosclerosis is 
endothelium dysfunction, which can be triggered by several insults. Hence, it is plausible to 
determine whether TMAO induces endothelial inflammasome activation and contribute to 
the endothelial dysfunction in the very early stages of atherosclerosis. 

Material and Methods

Cell culture and treatments
The mouse carotid arterial endothelial cells were isolated and characterized as described earlier [20, 

21]. For the TMAO stimulation, cells were treated with TMAO (30 µm) and then incubated for overnight. 
In case of inhibitors used, the cells were pretreated with 1 mmol/L Z-WEHD-FMK (WEHD; R&D Systems, 
Minneapolis, MN), cathepsin B inhibitor Ca-074Me (5 μM, Sigma), potassium channel blocker glibenclamide 
(Glib, 10 μM, Sigma) or ROS scavenger N-acetyl-L-cysteine (NAC, 10 μM, Sigma) for 30 min.

Immunofluorescence microscopic analysis
Cells were grown on eight-well chamber slides and then treated as indicated. After the treatment, cells 

were fixed with 4% paraformaldehyde for 15 minutes. The cells were then washed in phosphate-buffer 
saline (PBS) and were incubated for 2 hours at 4°C with rabbit and/or mouse anti-Nlrp3 (1:500, Abcam), 
anti-ASC (1:500, Invitrogen, Abcam), anti-caspase 1 (1:1000; Abcam) and anti-ZO-1 (1:1000; Invitrogen). 
Double immunofluorescent staining was performed by incubating slides with Alexa Fluor 488 or Alexa 
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Fluor 555-labeled secondary antibody (1:100, Invitrogen) for 1 hour at room temperature. The slides were 
visualized through sequentially scanning on an Olympus laser scanning confocal microscope (Fluoview 
FV1000, Olympus, Japan). Colocalization was analyzed by Image Pro Plus software, and the co-localization 
coefficient was represented by Pearson's correlation coefficient [22-25].

Caspase-1 Activity and IL-1β production Assay
Cells were harvested and homogenized to extract proteins for caspase-1 activity assay using a 

commercially available kit (Biovision, CA). The data was expressed as the fold change compared with 
control cells. In addition, the cell supernatant was collected and IL-1β production was measured by a 
commercially available ELISA Kit (R&D System, Minneapolis, MN) according to the protocol described by 
the manufacturer.

Immunoblotting
Cells were washed twice with ice-cold PBS and homogenized in ice-cold HEPES buffer containing 

25 mM Na-HEPES, 255 mM sucrose, 1 mM EDTA, and 0.1 mM phenylmethylsulfony1 fluoride (pH 7.4). 
After centrifugation at 1000 × g for 10 min at 4°C, the supernatants containing the membrane protein and 
cytosolic components, termed homogenates, were frozen in liquid N2, and stored at −80°C until use. Cell 
homogenates were denatured with reducing Laemmli SDS-sample buffer and boiled for 5 min. Samples were 
run on SDS-PAGE gel, transferred into PVDF membrane and blocked. The membranes were probed with 
ZO-1 antibody (Life Technology, 1:1000) or β-actin overnight at 4°C followed by incubation with secondary 
antibody, and then conjugated to horseradish peroxidase-labeled immunoglobulin G. The immunoreactive 
bands were enhanced by chemiluminescence methods and imaged on Kodak Omat film. β-actin served as 
a loading control. 

Endothelial permeability
CAECs were cultured in 24-well transwell plates and treated as indicated for 24 hr. The transwell 

inserts were moved into non-used wells with 200 μl fresh media. 100 μl Fluorescein isothiocyanate (FITC)–
dextran (10 KDa, Invitrogen) solution was added into each insert and the plate was incubated at 37°C for 
2 hours to allow fluorescein molecules flow through the endothelial cell monolayer. The inserts were then 
removed and fluorescent intensity in each well was determined at excitation/emission of 485/530 nm using 
a fluorescent microplate reader (FL × 800, BIO-TEK Instruments). The arbitrary fluorescence intensity was 
used to calculate the relative permeability.

Partial Carotid Ligation and Osmotic Pump Implantation
Eight-week-old male C57BL/6J wild-type mice were used. All protocols were approved by the 

Institutional Animal Care and Use Committee of Virginia Commonwealth University. Partial carotid ligation 
surgery was performed as previously reported [26]. In brief, animals were sedated with 2% isoflurane that 
was provided through a nose cone. Next, a ventral midline incision of 4 to 5 mm was made in the neck. With 
the use of blunt dissection, muscle layers were separated with curved forceps to expose the left carotid 
artery (LCA). Three of four branches of the LCA (left external carotid, internal carotid, and occipital arteries) 
were ligated by using a 6-0 silk suture. The superior thyroid artery was left intact, providing the sole source 
for blood circulation. The incision was then closed, and the animals were kept on a heating pad until they 
gained consciousness. In the TMAO infusion group, the osmotic pump (model 2002; Alzet, Cupertino, CA) 
filled with TMAO was implanted subcutaneously, and the catheter was inserted into the external jugular 
vein. In another group, mice were injected intraperitoneally with WEHD, a caspase-1 inhibitor, at a dosage 
of 1 mg/kg per day before implantation of the TMAO pump. Fourteen days after partial ligation, animals 
were sacrificed by cervical dislocation after the administration of anesthesia. Blood samples were collected, 
LCAs and right carotid arteries were then harvested for immunohistochemistry, dual fluorescence staining, 
and confocal analysis.

Immunohistochemistry
Formalin-fixed, paraffin-embedded carotid arterial tissue sections (4 μm) were stained with primary 

antibodies (1:50 dilution) overnight at 4 °C after a 20 min wash with 3% H2O2 and 30 min blocking with 
serum. The slides were sequentially treated with CHEMICON IHC Select HRP/DAB Kit (EMD Millipore, 
MA) according to the protocol described by the manufacturer. Finally, the slides were counterstained with 
hematoxylin. Negative controls were prepared by leaving out the primary antibodies.
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Statistics
Data are presented as means±SEM. Significant differences between and within multiple groups were 

examined using ANOVA for repeated measures, followed by Duncan’s multiple-range test. P < 0.05 was 
considered statistically significant

Results

TMAO induces formation and activation of NLRP3 inflammasome in mouse carotid artery 
endothelial cells (CAECs) 
We tested the hypothesis that TMAO induces inflammasome formation and activation 

and thereby contributes to endothelial injury. In cultured CAECs, we examined whether TMAO 
could trigger the formation and activation of Nlrp3 inflammasome complexes by analyzing 
the co-localization of Nlrp3 inflammasome components, the cleavage of pro-caspase-1 to 
activate caspase-1, and the production of IL-1β. Our confocal microscopic images showed 
that TMAO-induced co-localization of inflammasome molecules between Nlrp3 (green) 
with ASC (red) or Nlrp3 (green) with Caspase-1(red) as shown by increased yellow staining 
(yellow spots) in CAECs, which were blocked by caspase-1 inhibitor (WEHD) or silencing 
Nlrp3 gene by Nlrp3 siRNA (Nlrp3si) transfection (Fig. 1). Nlrp3 inflammasome complex 
formation results in cleavage of pro-caspase-1 protein to their bioactive form, which in 
turn binds to and cleaves its substrates such as pro-interleukin 1β (IL-1β). In line with the 
confocal findings of inflammasome complex formation, we have shown that TMAO increased 
caspase 1 activity (Fig. 2A) and also enhanced IL-1β production (Fig. 2B). Caspase-1 activity 
and IL-1β production were abolished in CAECs with prior treatment of Nlrp3 gene silencing. 

Effect of TMAO on tight junction proteins and endothelial cell permeability in CAECs
Endothelial cells are connected by tight junction proteins which maintain the integrity of 

the endothelium. Tight junctions function as a barrier in regulating paracellular permeability 
and maintaining cell polarity. ZO-1 is an essential tight junction protein which is associated 
with junction integrity and its down regulation leads to junctional disruption and enhnaced 
cellular permealibity. Hence, we investigated whether TMAO-induced Nlrp3 inflammasome 

Fig. 1. TMAO-induced NLRP3 
inflammasome formation and 
activation in CAECs. Represen-
tative confocal fluorescence im-
ages show the colocalization of 
NLRP3 with ASC (A) or NLRP3 
with caspase-1 (C). Sum-
marized data shows the fold 
changes of pearson coefficient 
correlation (PCC) for the colo-
calization of NLRP3with ASC 
(B) and NLRP3 with caspase-1 
(D) in CAECs of Nlrp3+/+ mice. * 
Significant difference (P<0.05) 
compared to the values from 
control cells, # Significant dif-
ference (P<0.05) compared to 
the values from TMAO treated 
group. Nlrp3 si, Nlrp3 siRNA; 
cells were transfected with 
Nlrp3 siRNA or WEHD and then 
stimulated with TMAO. N=5-6.
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activation could cause disassembly of tight junction protein ZO-1. Our confocal analysis 
showed that TMAO markedly decreased the expression of tight junction protein ZO-1 on 
endothelial cell monolayers (Fig. 3A). TMAO induced downregulation of ZO-1 which was 
prevented by silencing Nlrp3 in the CAECs. Down-regulation of ZO-1 by TMAO was further 
confirmed by western blot analyses which indicate that TMAO decreased ZO-1 protein 
expression (Fig. 3B and 3C). To further determine the functional significance of NLRP3 
inflammasome activation, we examined its influence on TMAO-induced changes in barrier 
function of endothelial monolayers. As shown in Fig. 4, dextran flux significantly increased 
in ECs treated with TMAO compared to vehicle treated ECs. This TMAO-induced increase in 
EC permeability was markedly reduced in the presence of Nlrp3 siRNA transfection (Fig. 4). 
These results indicate that activation of Nlrp3 inflammasome by TMAO causes disruption of 
tight-junction proteins and alters EC permeability.

Fig. 2. Effects of TMAO on caspase-1 activity and 
IL-1β production in CAECs. Values are arithmetic 
means ± SEM (n=6 each group) of caspase-1 activity 
(A), IL-1β production (B) in CAECs of Nlrp3+/+ mice 
with or without stimulation of TMAO and/or Nlrp3 
siRNA transfection. * Significant difference (P<0.05) 
compared to the values from control cells, # Signifi-
cant difference (P<0.05) compared to the values 
from TMAO treated group. Nlrp3 si, Nlrp3 siRNA; 
cells were transfected with Nlrp3 siRNA or WEHD 
and then stimulated with TMAO. N=6.

Fig. 3. Effects of Nlrp3 gene silencing on TMAO-
induced tight junction protein ZO-1 in CAECs. A: 
Representative fluorescence images shows the ZO-1 
expression in CAECs with or without stimulation of 
TMAO and/or Nlrp3 siRNA transfection (n=5). B: 
Representative Western blot gel document show-
ing the expression of ZO-1 (n=3-5). C: Summarized 
data showing the expression of ZO-1 (n=3-5). * Sig-
nificant difference (P<0.05) compared to the values 
from control cells.
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TMAO-induced inflammasome signaling 
pathways 
Endothelial inflammasomes are known 

to be activated by three major signaling 
pathways which include reactive oxygen 
species (ROS) activation, lysosome rupture 
and ion channel gating (K+ efflux). We 
examined TMAO-induced inflammasome 
signaling mechanisms by using inhibitors of 
the above mentioned pathways which lead 
to activation of Nlrp3 inflammasomes. It 
was found that inhibition of both cathepsin 
B activity (Ca-074Me) and ROS release 
(N-acetyl-L-Cysteine or Nac) in ECs markedly 
attenuated TMAO-induced caspase-1 activity 
in ECs (Fig. 5). In contrast, K Channel blocker 
(Glibenclamide) had a no significant effect 
on TMAO-induced Nlrp3 inflammasome 
activation. Therefore our results indicate that 
TMAO could act via lysosomal destabilization 
and blockade of ROS.

TMAO-induced endothelial inflamma-
some formation and activation in the ca-
rotid arteries of mice
Confocal microscopic analysis demon-

strated that TMAO treatment increased the 
co-localization of NLRP3 with ASC in carotid 
arteries of wild type mice (Fig. 6A). In addi-

Fig. 4. Inhibition of inflammasome abolishes TMAO-
induced cell permeability in CAECs. Values are arith-
metic means ± SEM (n=6 each group) of cell perme-
ability in CAECs of Nlrp3+/+ mice with or without 
stimulation of TMAO and/or Nlrp3 siRNA transfec-
tion. * Significant difference (P<0.05) compared to 
the values from control cells, # Significant difference 
(P<0.05) compared to the values from TMAO treated 
group. Nlrp3 si: Nlrp3 siRNA; cells were transfected 
with Nlrp3 siRNA and then stimulated with TMAO. 

Fig. 5. Effect of cathespsin B inhibition, potassium 
channel blockade or ROS scavenging on TMAO- in-
duced NLRP3 inflammasomes activation in CAECs. 
Summarized data showing the, caspase-1 activity in 
CAECs with or without stimulation of TMAO. Ca-074: 
Ca-074Me, cathepsin B inhibitor, Gly: Glybeclamide, 
potassium channel blocker, NAC: N-acetyl-L-cyste-
ine, ROS scavenger. * P<0.05 vs. Ctrl group; # P<0.05 
vs. TMAO (n=6).

Fig. 6. Nlrp3 inflammasome formation and activa-
tion in wild type mice with or without stimulation 
of TMAO and PLCA. A: Summarized data showing 
the co-localization coefficient (PCC) of Nlrp3 with 
Asc. B: IL-1β production in the intima of vehicle or 
TMAO treated wild type mice. * Significant difference 
(P<0.05) compared to the values from control mice. # 
Significant difference (P<0.05) compared to the val-
ues from mice on the TMAO. 
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tion, the TMAO-induced IL-1β production in the intima in wildtype mice (Fig. 6B). This data 
suggests the formation and activation of NLRP3 inflammasomes in the endothelium of these 
arteries.

Discussion

The primary goal of the present study was to reveal whether TMAO induced NLRP3 
inflammasome activation and leads to the development of endothelial dysfunction. We 
first confirmed that TMAO stimulation induced the formation and activation of the NLRP3 
inflammasome complex in CAECs. However, such inflammasome formation and activation 
were abolished in ECs with prior treatment with Nlrp3 siRNA or Caspase-1 inhibitor, WEHD. 
Thus TMAO lead to the formation and activation of NLRP3 inflammasomes in ECs. The 
findings demonstrate the critical role of TMAO in the activation of NLRP3 inflammasomes 
which could be associated with subsequent endothelial dysfunction and atherogenesis. 

Recently, NLRP3 inflammasome has been implicated in different auto inflammatory 
diseases such as gout, myocardial infarction, and type II diabetes, obesity, glomerular injury 
[18, 24, 27-36] and also to a number of other diseases including silicosis, liver toxicity, 
Alzheimer's disease, cystic fibrosis and acute lung injury [23, 24, 37-42]. However, little is 
known about inflammasome contribution to the initiation or development of atherosclerosis. 
Among different types of inflammasomes, the NLRP3 inflammasome has been well 
characterized, which consists of a proteolytic complex formed by Nlrp3, the adaptor protein 
ASC, and caspase-1. Caspase-1 is activated when the inflammasome complex is formed to 
produce active IL-1β and IL-18 by cleavage of their precursors [22, 29, 43]. NLRP3 acts as 
the sensory component to recognize both endogenous and exogenous danger signals [44-
46], when ASC and caspase-1 are recruited to form a protein complex, where caspase-1 is 
activated [47-49]. The active caspase-1 not only proteolytically cleaves IL-1β and/or IL-
18 into their biologically active form [22, 29, 43]. In macrophages, NLRP3 inflammasome 
activation is critical for the foam cell formation and other atherosclerotic lesions upon 
proatherogenic stimuli such as cholesterol crystals (ChC) [18, 19]. More interestingly, some 
non-atherogenic endanger factors also activate NLRP3 inflammasomes including adenosine 
triphosphate (ATP), uric acid, visfatin and DAMPs [26, 28, 30, 34, 50-53], which may enhance 
the susceptibility to atherosclerosis or other vascular diseases, cell pyroptosis and alterations 
of cell membrane permeability, turning on the inflammatory response and directly inducing 
cell dysfunction or injury. Moreover, recent study shows that TMAO activates the expression 
of inflammasomes in human umbilical vein endothelial cells [54]. However, it remains 
unknown whether TMAO induces NLRP3 inflammasomes activation in both in vitro and 
in vivo and how activated NLRP3 inflammasomes lead to endothelial dysfunction. In the 
present study, we first confirmed that TMAO-induced the formation and activation of the 
NLRP3 inflammasome complex in CAECs, as shown by colocalization of NLRP3 with ASC or 
NLRP3 with caspase-1 using confocal microscopy and by biochemical analysis of caspase-1 
activity and production of IL-1β. However, such inflammasome formation and activation 
were abolished in CAECs with prior treatment with Nlrp3 siRNA or caspase-1 inhibitor, 
WEHD (Fig. 1 and 2). In addition in in vivo studies, mice infused with TMAO for 2 weeks 
had increased the NLRP3 inflammasome formation (colocalization of NLRP3 with ASC) 
and activation (IL-1β production) in carotid arteries. Taken together, these results clearly 
suggest that TMAO-induced NLRP3 inflammasome activation in endothelial cells, which 
may contribute to the development of endothelial dysfunction or atherogenic pathology. To 
our knowledge, the results from the present study provide the first experimental evidence 
demonstrated that TMAO-induced endothelial inflammasome activation in both in in vitro 
and in vivo models.

Vascular endothelium serves as a semi-selective interface between the vessel lumen and 
surrounding tissue and acts as a barrier, controlling the passage of materials and contributes 
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to vascular homeostasis [55, 56]. Alterations of endothelial cells play a central role in the 
pathogenesis of a many human diseases, as endothelial cells have the key function in the 
maintenance of vascular homeostasis. Vascular endothelial damage is involved in peripheral 
vascular disease, stroke, heart disease, diabetes, insulin resistance, venous thrombosis, 
chronic kidney failure, metastasis, tumor growth and some viral infectious diseases [55, 
56]. Endothelium is altered by various molecules including proteins, lipid-transporting 
particles, metabolites, and hormones, as well as through specific junctional proteins and 
receptors [55, 56]. The present study demonstrated that stimulation of endothelial cells 
with TMAO decreased the expression of tight junction protein ZO-1 in endothelial cell 
monolayers, where as Nlrp3 gene silencing prevented such TMAO-induced down regulation 
of tight junction protein. These findings demonstrate for the first time that TMAO-induced 
endothelial hyperpermeability which is associated with inflammasome-dependent tight 
junction disruption.

Many physiologic and pathophysiologic stimuli can induce changes in endothelial 
permeability. For example bacterial endotoxin LPS, environmental toxins, high fat diet 
can contribute to endothelial dysfunction by increasing endothelial permeability and 
subsequently arterial lipid accumulation in the subendothelial space, thereby initiating 
atherosclerotic plaque development. Other injurious stimuli like thrombin, histamine and 
other acute inflammatory mediators can act on endothelium to stimulate opening of their 
intercellular junctions at the level of adherens and tight junctional complexes [57, 58]. It 
has been well established that loss of the integrity of inter-endothelial tight junctions 
contributes to enhanced paracellular endothelial permeability and plasma proteins including 
albumin and visfatin can impair renal tubular or endothelial tight junctions via activation 
of Nlrp3 inflammasomes [23, 24, 57, 58]. Consistent with these studies, the present study 
demonstrates that TMAO treatment induces increases in permeability to dextrans in CAECs, 
via activation of Nlrp3 inflammasomes (Fig. 4) which is prevented by inhibition of Nlrp3 by 
Nlrp3 siRNA. 

Next we examined how TMAO-induced NLRP3 inflammasome activation in endothelial 
cells. Several mechanisms underlying inflammasome activation have been reported, 
including lysosome rupture, K+ channel gating, and reactive oxygen species (ROS) activation 
[25]. We first tested which of these pathways are involved in TMAO-induced NLRP3 
inflammasome activation. Using blockers or inhibitors of individual pathway, we found 
that TMAO-induced NLRP3 inflammasome formation and activation in endothelial cells 
were significantly attenuated or abolished by ROS scavenger, N-acetyl-L-cysteine (NAC) 
and cathepsin B inhibitor, Ca-074Me, but not by potassium channel blocker, glibenclamide 
(Glib). These results suggest that TMAO is able to activate NLRP3 inflammasomes in ECs 
at least via two reported pathways involving increased ROS and frustrated lysosomes and 
enhanced cathepsin B activity.

In summary, this work has studied the formation and activation of NLRP3 
inflammasomes by TMAO which may be an important initiating mechanism to turn on the 
endothelial inflammatory response leading to endothelial dysfunction. Our data suggest 
that TMAO induces inflammasome-dependent endothelial hyperpermeability via activation 
of the Nlrp3 inflammasome in endothelial cells. Thus, our findings provide novel insights 
that TMAO-induced endothelial hyperpermeability via inflammasome activation may 
facilitate endothelial barrier dysfunction thereby contributing to endothelial dysfunction 
and atherogenesis. 
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