101 research outputs found
Effects of PDE4 inhibitors on lipopolysaccharide-induced priming of superoxide anion production from human mononuclear cells.
AIMS: Phosphodiesterase 4 (PDE4) inhibitors have been described as potent anti-inflammatory compounds, involving an increase in intracellular levels of cyclic 3',5'-adenosine monophosphate (AMP). The aim of this study was to compare the effects of selective PDE4 inhibitors, rolipram and RP 73-401 with the cell permeable analogue of cyclic AMP, dibutyryl-cyclic AMP (db-cAMP) and the anti-inflammatory cytokine interleukin-10 (IL-10) on superoxide anion production from peripheral blood mononuclear cells preincubated with lipopolysaccharide (LPS). MAJOR FINDINGS: We report that, after incubation of the cells with LPS, a large increase in superoxide anion production was observed. Rolipram or RP 73-401 (10(-8) to 10(-5) M) induced significant reductions of fMLP-induced superoxide anion production in cells incubated with or without LPS. The db-cAMP (10(-5) to 10(-3) M) also elicited dose-dependent inhibitions of the fMLP-induced superoxide anion production. In contrast, IL-10 (1 or 10 ng/ml) did not elicit a reduction in fMLP-induced superoxide anion production in both conditions. PRINCIPAL CONCLUSION: These results suggest that the inhibitory activity of PDE4 inhibitors on fMLP-induced production of superoxide anion production is mediated by db-cAMP rather than IL-10
Phosphodiesterase 4 inhibitors and db-cAMP inhibit TNF-α release from human mononuclear cells. Effects of cAMP and cGMP-dependent protein kinase inhibitors
We investigated the effects of specific inhibitors of cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) on the inhibitory activity of phosphodiesterase (PDE) type 4 inhibitors and of the cell permeable analogue of cAMP, db-cAMP on LPS-induced TNF-α release from human mononuclear cells. Incubation from 30 min of mononuclear cells with dbcAMP (10−5 to 10−3 M), rolipram (10−9 M to 10−5 M) or Ro 20-1724 (10−9 M to 10−5 M) significantly inhibited LPS-induced TNF-α release. When mononuclear cells were preincubated for 30 min with the selective PKA inhibitor, H89 (10−4 M), but not with the selective PKG inhibitor, Rp-8-pCPT-cGMPs (10−4 M), a significant reduction of the inhibitory effect of db-cAMP was noted. Thirty min incubation of mononuclear cells with Rp-8-pCPT-cGMPs induced a significant reduction of the inhibitory activities of both rolipram and Ro 20-1724 (10−9 to 10−5 M) on LPS-induced TNF-α release, whereas H89 elicited a moderate, but significant inhibition. The present data indicate that db-cAMP inhibits TNF-α release from human mononuclear cells through a PKA-dependent mechanism. In contrast, PDE 4 inhibitors elicit their in vitro anti-inflammatory activities via a PKG-dependent rather than PKA-dependent activation
Bronchial responses to substance P after antigen challenge in the guinea-pig: in vivo and in vitro studies
The effect of antigen challenge on the airway responses to substance P and on the epithelial neutral endopeptidase (NEP) activity was investigated in aerosol sensitized guinea-pigs. In vivo, bronchial responses to aerosolized substance P were similar to the responses observed in antigen-challenged guinea-pigs and in the control groups. In contrast, when the guinea-pigs were pretreated with the NEP inhibitor, phosphoramidon, a significant increase in the airway responses to substance P was observed after antigen challenge in vivo. However, in vitro, the contractile responses of the tracheal smooth muscle to substance P were similar between groups of guinea-pigs, in respect to the presence or absence of the epithelium and/or phosphoramidon. Histological studies showed an accumulation of eosinophils in the tracheal submucosa after antigen challenge and intact epithelial cells. These results show that in vivo bronchial hyperresponsiveness to substance P after antigen challenge in the guinea-pig is not associated with increased responses of the smooth muscle to exogenous SP in vitro. In addition, the results with phosphoramidon suggest that loss of NEP activity cannot account for the in vivo bronchial hyperresponsiveness to substance P presently observed
Insulin modulates cytokine release and selectin expression in the early phase of allergic airway inflammation in diabetic rats
<p>Abstract</p> <p>Background</p> <p>Clinical and experimental data suggest that the inflammatory response is impaired in diabetics and can be modulated by insulin. The present study was undertaken to investigate the role of insulin on the early phase of allergic airway inflammation.</p> <p>Methods</p> <p>Diabetic male Wistar rats (alloxan, 42 mg/Kg, i.v., 10 days) and controls were sensitized by s.c. injection of ovalbumin (OA) in aluminium hydroxide 14 days before OA (1 mg/0.4 mL) or saline intratracheal challenge. The following analyses were performed 6 hours thereafter: a) quantification of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and cytokine-induced neutrophil chemoattractant (CINC)-1 in the bronchoalveolar lavage fluid (BALF) by Enzyme-Linked Immunosorbent Assay, b) expression of E- and P- selectins on lung vessels by immunohistochemistry, and c) inflammatory cell infiltration into the airways and lung parenchyma. NPH insulin (4 IU, s.c.) was given i.v. 2 hours before antigen challenge.</p> <p>Results</p> <p>Diabetic rats exhibited significant reduction in the BALF concentrations of IL-1β (30%) and TNF-α (45%), and in the lung expression of P-selectin (30%) compared to non-diabetic animals. This was accompanied by reduced number of neutrophils into the airways and around bronchi and blood vessels. There were no differences in the CINC-1 levels in BALF, and E-selectin expression. Treatment of diabetic rats with NPH insulin, 2 hours before antigen challenge, restored the reduced levels of IL-1β, TNF-α and P-selectin, and neutrophil migration.</p> <p>Conclusion</p> <p>Data presented suggest that insulin modulates the production/release of TNF-α and IL-1β, the expression of P- and E-selectin, and the associated neutrophil migration into the lungs during the early phase of the allergic inflammatory reaction.</p
The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia
Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and grey matter metabolites in a slab cranial to the ventricles and relate these to the outcome. A standard 2D-chemical shift imaging protocol was used for measuring a transverse volume of interest located cranial to the ventricles allowing for direct comparison of the metabolites in white and grey matter brain tissue in 24 term asphyxiated newborns aged 3 to 16 days. Cho, NAA and Lact showed significant differences between four subgroups of asphyxiated infants with more and less favourable outcomes. High levels of Cho and Lact in the grey matter differentiated non-survivors from survivors (P = 0.003 and P = 0.017, respectively). In perinatal asphyxia the levels of Cho, NAA and Lact in both white and grey matter brain tissue are affected. The levels of Cho and Lact measured in the grey matter are the most indicative of survival. It is therefore advised to include grey matter brain tissue in the region of interest examined by multivoxel MR spectroscopy. aEuro cent Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia. aEuro cent Choline and lactate levels in grey matter seem the best indicators of survival. aEuro cent Both grey and white matter should be examined during spectroscopy for perinatal asphyxia
Expression and function of human hemokinin-1 in human and guinea pig airways
<p>Abstract</p> <p>Background</p> <p>Human hemokinin-1 (hHK-1) and endokinins are peptides of the tachykinin family encoded by the <it>TAC4 </it>gene. <it>TAC4 </it>and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study.</p> <p>Methods</p> <p>RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages.</p> <p>Results</p> <p>In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK<sub>1</sub>-and NK<sub>2</sub>-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK<sub>2</sub>-receptors, which blockade unmasked a NK<sub>1</sub>-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK<sub>1</sub>-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages.</p> <p>Conclusions</p> <p>We demonstrate endogenous expression of <it>TAC4 </it>in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.</p
Disease Progression in MRL/lpr Lupus-Prone Mice Is Reduced by NCS 613, a Specific Cyclic Nucleotide Phosphodiesterase Type 4 (PDE4) Inhibitor
Systemic lupus erythematosus is a polymorphic and multigenic inflammatory autoimmune disease. Cyclic AMP (cAMP) modulates inflammation and the inhibition of cyclic nucleotide phosphodiesterase type 4 (PDE4), which specifically hydrolyzes cAMP, inhibits TNFα secretion. This study was aimed at investigating the evolution of PDE activity and expression levels during the course of the disease in MRL/lpr lupus-prone mice, and to evaluate in these mice the biological and clinical effects of treatments with pentoxifylline, denbufylline and NCS 613 PDE inhibitors. This study reveals that compared to CBA/J control mice, kidney PDE4 activity of MRL/lpr mice increases with the disease progression. Furthermore, it showed that the most potent and selective PDE4 inhibitor NCS 613 is also the most effective molecule in decreasing proteinuria and increasing survival rate of MRL/lpr mice. NCS 613 is a potent inhibitor, which is more selective for the PDE4C subtype (IC50 = 1.4 nM) than the other subtypes (PDE4A, IC50 = 44 nM; PDE4B, IC50 = 48 nM; and PDE4D, IC50 = 14 nM). Interestingly, its affinity for the High Affinity Rolipram Binding Site is relatively low (Ki = 148 nM) in comparison to rolipram (Ki = 3 nM). Finally, as also observed using MRL/lpr peripheral blood lymphocytes (PBLs), NCS 613 inhibits basal and LPS-induced TNFα secretion from PBLs of lupus patients, suggesting a therapeutic potential of NCS 613 in systemic lupus. This study reveals that PDE4 represent a potential therapeutic target in lupus disease
Prognostic value of early, conventional proton magnetic resonance spectroscopy in cooled asphyxiated infants
BACKGROUND: Neonatal hypoxic-ischemic encephalopathy (HIE) commonly leads to neurodevelopmental impairment, raising the need for prognostic tools which may guide future therapies in time. Prognostic value of proton MR spectroscopy (H-MRS) between 1 and 46 days of age has been extensively studied; however, the reproducibility and generalizability of these methods are controversial in a general clinical setting. Therefore, we investigated the prognostic performance of conventional H-MRS during first 96 postnatal hours in hypothermia-treated asphyxiated neonates. METHODS: Fifty-one consecutive hypothermia-treated HIE neonates were examined by H-MRS at three echo-times (TE = 35, 144, 288 ms) between 6 and 96 h of age, depending on clinical stability. Patients were divided into favorable (n = 35) and unfavorable (n = 16) outcome groups based on psychomotor and mental developmental index (PDI and MDI, Bayley Scales of Infant Development II) scores (>/= 70 versus < 70 or death, respectively), assessed at 18-26 months of age. Associations between 36 routinely measured metabolite ratios and outcome were studied. Age-dependency of metabolite ratios in whole patient population was assessed. Prognostic performance of metabolite ratios was evaluated by Receiver Operating Characteristics (ROC) analysis. RESULTS: Three metabolite ratios showed significant difference between outcome groups after correction for multiple testing (p < 0.0014): myo-inositol (mIns)/N-acetyl-aspartate (NAA) height, mIns/creatine (Cr) height, both at TE = 35 ms, and NAA/Cr height at TE = 144 ms. Assessment of age-dependency showed that all 3 metabolite ratios (mIns/NAA, NAA/Cr and mIns/Cr) stayed constant during first 96 postnatal hours, rendering them optimal for prediction. ROC analysis revealed that mIns/NAA gives better prediction for outcome than NAA/Cr and mIns/Cr with cut-off values 0.6798 0.6274 and 0.7798, respectively, (AUC 0.9084, 0.8396 and 0.8462, respectively, p < 0.00001); mIns/NAA had the highest specificity (95.24%) and sensitivity (84.62%) for predicting outcome of neonates with HIE any time during the first 96 postnatal hours. CONCLUSIONS: Our findings suggest that during first 96 h of age even conventional H-MRS could be a useful prognostic tool in predicting the outcome of asphyxiated neonates; mIns/NAA was found to be the best and age-independent predictor
- …