189 research outputs found

    Improved irrigation management

    Get PDF
    Non-Peer Reviewe

    Improved irrigation management

    Get PDF
    Non-Peer Reviewe

    Irrigated corn production in Saskatchewan

    Get PDF
    Non-Peer ReviewedTwo hundred and twenty five site years of irrigated corn production experience, is analyzed here for the years 2000, 2001, 2002, 2003, 2004, and 2005. The leaf tissue nutrition and field agronomy of all sites are documented at anthesis. Cob development factors, yields, and grain quality was assessed by mid-September. Whole plant silage and/or dry matter stover, for grazing was analyzed. Over twenty varieties of the newest corn genetics are also included in this study. A strong working relationship was established with Alberta and Manitoba during the course of this corn research. On the basis of the results from this study, it was concluded that a meaningful data base and foundation for agronomic recommendations, to irrigated corn producers has been established

    Energy‐constrained open‐system magmatic processes 3. Energy‐Constrained Recharge, Assimilation, and Fractional Crystallization (EC‐RAFC)

    Get PDF
    Geochemical data for igneous rock suites provide conclusive evidence for the occurrence of open‐system processes within thermally and compositionally evolving magma bodies. The most significant processes include magma Recharge (with possible enclave formation and magma mixing), Assimilation of anatectic melt derived from wallrock partial melting and formation of cumulates by Fractional Crystallization (RAFC). In this study, we extend the Energetically Constrained Assimilation and Fractional Crystallization (EC‐AFC) model [Spera and Bohrson, 2001; Bohrson and Spera, 2001] to include the addition of compositionally and thermally distinct recharge melt during simultaneous assimilation and fractional crystallization. Energy‐Constrained Recharge, Assimilation, and Fractional Crystallization (EC‐RAFC) tracks the trace element and isotopic composition of melt, cumulates and enclaves during simultaneous recharge, assimilation and fractional crystallization. EC‐RAFC is formulated as a set of 3 + t + i + s coupled nonlinear differential equations, where the number of trace elements and radiogenic and stable isotope ratios modeled are t, i, and s, respectively. Solution of the EC‐RAFC equations provides values for the average wallrock temperature (Ta), mass of melt within the magma body (Mm), mass of cumulates (Mct) and enclaves (Men), mass of wallrock involved in the thermal interaction (Mao), mass of anatectic melt assimilated (M*a), concentration of t trace elements and i + s isotopic ratios in melt (Cm), cumulates (Cct), enclaves (Cen), and anatectic melt (Ca) as a function of magma temperature (Tm). Input parameters include the equilibration temperature (Teq), the initial temperature and composition of pristine melt (Tmo, Cmo, Δmo), recharge melt (Tro, Cro, Δro), and wallrock (Tao, Cao, Δao), temperature‐dependent trace element distribution coefficients (Dm, Dr, Da), heats of transition for wallrock (Δha), pristine melt (Δhm), and recharge melt (Δhr), and the isobaric specific heat capacity of assimilant (Cp,a), pristine melt (Cp,m), and recharge melt (Cp,r). The magma recharge mass function, Mr(Tm), is specified a priori and defines how recharge magma is added to standing magma. The present EC‐RAFC simulator incorporates a weak coupling to major element mass balance and phase relations based on laboratory experiments or Gibbs Energy minimization [e.g., Ghiorso, 1997]. EC‐RAFC can be applied to a variety of magmatic systems including volcanic suites that show evidence of magma mixing, layered mafic intrusions, and granitoid plutons. Predictions for masses, as well as compositions of magmatic products, are part of the EC‐RAFC solution. The “systems” approach provides an opportunity to quantitatively assess the roles of assimilation, fractional crystallization, and magma recharge in magma evolution using trace element and isotopic constraints together with energy conservation

    Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RAxFC): A Visual Basic computer code for calculating trace element and isotope variations of opensystem magmatic systems

    Get PDF
    Volcanic and plutonic rocks provide abundant evidence for complex processes that occur in magma storage and transport systems. The fingerprint of these processes, which include fractional crystallization, assimilation, and magma recharge, is captured in petrologic and geochemical characteristics of suites of cogenetic rocks. Quantitatively evaluating the relative contributions of each process requires integration of mass, species, and energy constraints, applied in a self-consistent way. The energy-constrained model Energy-Constrained Recharge, Assimilation, and Fractional Crystallization (EC-RaxFC) tracks the trace element and isotopic evolution of a magmatic system (melt + solids) undergoing simultaneous fractional crystallization, recharge, and assimilation. Mass, thermal, and compositional (trace element and isotope) output is provided for melt in the magma body, cumulates, enclaves, and anatectic (i.e., country rock) melt. Theory of the EC computational method has been presented by Spera and Bohrson (2001, 2002, 2004), and applications to natural systems have been elucidated by Bohrson and Spera (2001, 2003) and Fowler et al. (2004). The purpose of this contribution is to make the final version of the EC-RAxFC computer code available and to provide instructions for code implementation, description of input and output parameters, and estimates of typical values for some input parameters. A brief discussion highlights measures by which the user may evaluate the quality of the output and also provides some guidelines for implementing nonlinear productivity functions. The EC-RAxFC computer code is written in Visual Basic, the programming language of Excel. The code therefore launches in Excel and is compatible with both PC and MAC platforms. The code is available on the authors’ Web sites http://magma.geol.ucsb.edu/and http://www.geology.cwu.edu/ecrafc) as well as in the auxiliary material

    Energy‐constrained open‐system magmatic processes IV: Geochemical, thermal and mass consequences of energy‐constrained recharge, assimilation and fractional crystallization (EC‐RAFC)

    Get PDF
    A wealth of geochemical and petrological data provide evidence that the processes of fractional crystallization, assimilation, and magma recharge (replenishment) dominate the chemical signatures of many terrestrial igneous rocks. Previous work [Spera and Bohrson, 2001; Bohrson and Spera, 2001] has established the importance of integrating energy, species and mass conservation into simulations of complex magma chamber processes. An extended version of the energy‐constrained formulation, Energy‐Constrained Recharge, Assimilation, Fractional Crystallization (EC‐RAFC), tracks mass and compositional variations of melt, cumulates, and enclaves in a magma body undergoing simultaneous recharge, assimilation, and fractional crystallization [Spera and Bohrson, 2002]. Because many EC‐RAFC results are distinct from those predicted by extant RAFC formulations, the primary goal of this paper is to present a range of geochemical and mass relationships for selected cases that highlight issues relevant to modern petrology. Among the plethora of petrologic problems that have important, well‐documented analogues in nature are the geochemical distinctions that arise when a magma body undergoes continuous versus episodic recharge, the connection between erupted magmas and associated cumulate bodies, the behavior of recharge‐fractionation dominated systems (RFC), thermodynamic conditions that promote the formation of enclaves versus cumulates, and the conditions under which magma bodies may be described as chemically homogeneous. Investigation of the effects of continuous versus episodic recharge for mafic magma undergoing RAFC in the lower crust indicates that the resulting geochemical trends for melt and solids are sensitive to the intensity and composition of recharge, suggesting that EC‐RAFC may be used as a tool to distinguish the nature of the recharge events. Compared to the record preserved in melts, the geochemical and mass characteristics of solids associated with particular RAFC events may record a more complete view of the physiochemical history of an open‐system magma body. The capability of EC‐RAFC to track melts and solids creates a genetic link that can be compared to natural analogues such as layered mafic intrusions and flood basalts, or mafic enclaves and their intermediate‐composition volcanic or plutonic hosts. The ability to quantify chemical and volume characteristics of solids and melts also underscores the need for integrated field, petrologic and geochemical studies of igneous systems. While it appears that a number of volcanic events or systems may be characterized by continuous influx or eruption of magma (“steady state systems”), reports describing compositional homogeneity for products that represent eruptions of more than one event are relatively rare. In support of this, EC‐RAFC results indicate that very specific combinations of recharge conditions, bulk distribution coefficients, and element concentrations are required to achieve geochemical homogeneity during cooling of a magma body undergoing RAFC. In summary, critical points are that EC‐RAFC provides a method to quantitatively investigate complex magmatic systems in a thermodynamic context; it predicts complex, nonmonotonic geochemical trends for which there are natural analogues that have been difficult to model; and finally, EC‐RAFC establishes the link between the chemical and physical attributes of a magmatic system. Application of EC‐RAFC promises to improve our understanding of specific tectonomagmatic systems as well as enhance our grasp of the essential physiochemical principles that govern magma body evolution

    Soil conditions and early crop growth as influenced by repeated swine manure application

    Get PDF
    Non-Peer ReviewedPrevious research on land applications of manures has focused on soil fertility and the relationship to final crop yield, but there is little research that quantifies the effects of changes in soil physical and chemical properties on early crop development that may ultimately be a factor in determining final yield. Surface crusting, sealing and soil strength may have significant impacts on crop emergence and early root growth that may explain final grain yield differences in some years. Research was carried out at Dixon, Saskatchewan in 2003 to examine the effect of manure addition on soil physical and chemical parameters important to crop emergence and early root development. The effects were then related to field observations made on emergence and root development of barley. This paper covers the results of this study

    Origin of primitive ocean island basalts by crustal gabbro assimilation and multiple recharge of plume-derived melts

    Get PDF
    Chemical Geodynamics relies on a paradigm that the isotopic composition of ocean island basalt (OIB) represents equilibrium with its primary mantle sources. However, the discovery of huge isotopic heterogeneity within olivine‐hosted melt inclusions in primitive basalts from Kerguelen, Iceland, Hawaii and South Pacific Polynesia islands implies open‐system behavior of OIBs, where during magma residence and transport, basaltic melts are contaminated by surrounding lithosphere. To constrain the processes of crustal assimilation by OIBs, we employed the Magma Chamber Simulator (MCS), an energy‐constrained thermodynamic model of recharge, assimilation and fractional crystallization. For a case study of the 21–19 Ma basaltic series, the most primitive series ever found among the Kerguelen OIBs, we performed sixty‐seven simulations in the pressure range from 0.2 to 1.0 GPa using compositions of olivine‐hosted melt inclusions as parental magmas, and metagabbro xenoliths from the Kerguelen Archipelago as wallrock. MCS modeling requires that the assimilant is anatectic crustal melts (P2O5 ≀ 0.4 wt.% contents) derived from the Kerguelen oceanic metagabbro wallrock. To best fit the phenocryst assemblage observed in the investigated basaltic series, recharge of relatively large masses of hydrous primitive basaltic melts (H2O = 2–3 wt%; MgO = 7–10 wt.%) into a middle crustal chamber at 0.2 to 0.3 GPa is required. Our results thus highlight the important impact that crustal gabbro assimilation and mantle recharge can have on the geochemistry of mantle‐derived olivine‐phyric OIBs. The importance of crustal assimilation affecting primitive plume‐derived basaltic melts underscores that isotopic and chemical equilibrium between ocean island basalts and associated deep plume mantle source(s) may be the exception rather than the rule

    The three-stage petrochemical evolution of the Steens Basalt [southeast Oregon, USA] compared to large igneous provinces and layered mafic intrusions

    Get PDF
    The Steens Basalt, southeast Oregon, USA, initiated at 17 Ma as the earliest pulse of the Columbia River Flood Basalt of the northwestern USA. New and existing stratigraphically controlled data reveal temporal changes in lava flow character, and whole-rock and mineral compositions, which we use to evaluate how the balance of magma differentiation processes change in time. Temporal petrochemical variations in the Steens Basalt are analogous to the transition from Imnaha Basalt to Grande Ronde Basalt units of the Columbia River Flood Basalt and have parallels to the temporal evolution of the Deccan and Siberian traps, in India and Russia, respectively, as well as to the stratigraphic sequences of the Bushveld, of South Africa, and Stillwater, in southern Montana, USA, layered mafic intrusions. The excellent stratigraphic control from the Steens Basalt provides a detailed record for comparison across this variety of large mafic systems, providing ability to focus on commonalities among differentiation processes in time. Chemostratigraphic excursions and volcanological characteristics in the Steens Basalt record a three-stage history. A minimally exposed early stage preserved in the lower A Steens Basalt section is characterized by heterogeneity (3–8 wt% MgO) collapsing to homogeneity (~5 wt% MgO), suggesting crystal fractionation outpaces recharge. Sparse weathering horizons indicate some time elapses between eruptions. The second stage, lower B Steens Basalt, is volumetrically dominant and represents waxing of the basaltic pulse. Flows are stacked immediately upon one another without evidence of weathering or intervening sedimentary horizons, indicating high-eruptive frequency. Compositions oscillate over a ΔMgO of ~4–5 wt% between low- and high- MgO basalt, both of which become more magnesian up section, signaling a period dominated by recharge. This stage closes with declining oscillations to produce homogeneous compositions (6–8 wt% MgO). The waning stage of eruption is represented by the upper Steens Basalt section, where thin intercalated weathering horizons occur especially high in the section. The upper Steens Basalt is characterized by overall declining MgO and increasing incompatible element concentrations confirming the dominance of crystal fractionation accompanied by crustal assimilation. In detail, the upper Steens Basalt initiates with a small stack of heterogeneous flows (5–8 wt% MgO), followed by a period of relatively homogeneous flows (~6 wt% MgO) and closes with highly variable basalts to trachybasaltic andesites. These compositional characteristics coupled with a change in average flow thickness from lower to upper Steens Basalt of5–10 m illustrate a shift to more silicic compositions and higher viscosity up section. The chemical changes up section in other large igneous provinces record similar variations in differentiation processes through time, suggesting that these large volume systems share similar evolutionary histories: the earliest records suggest the magmatic systems are initially more ephemeral and compositionally variable as magma traverses relatively cool crust. With waxing, a transition to regimes of high thermal and mass input results in a stage where recharge outpaces crystal fractionation. Thermal priming of the crust during these events coupled with waning input yields magmas in which fractionation plus crustal assimilation dominates over recharge late in the system; pulses of later stage felsic magmatism in many large mafic provinces are consistent with this evolution. Using layered mafic intrusions as an analog for intrusive, cumulus-dominated residua of voluminous fractionation, as well as oceanic large igneous provinces as an analog for total magma volumes in continental flood basalt regimes, leads to the suggestion that 50%–85% of the total magma volume in a flood basalt remains in the crust, effectively remaking the crust in these regions
    • 

    corecore