1,731 research outputs found

    Tungsten nuclear rocket, phase II, part 1 Final report, Jan. 16 - Jun. 15, 1966

    Get PDF
    Critical experiments and nuclear analyses of tungsten water moderated nuclear rocket reacto

    RAFCON: a Graphical Tool for Task Programming and Mission Control

    Full text link
    There are many application fields for robotic systems including service robotics, search and rescue missions, industry and space robotics. As the scenarios in these areas grow more and more complex, there is a high demand for powerful tools to efficiently program heterogeneous robotic systems. Therefore, we created RAFCON, a graphical tool to develop robotic tasks and to be used for mission control by remotely monitoring the execution of the tasks. To define the tasks, we use state machines which support hierarchies and concurrency. Together with a library concept, even complex scenarios can be handled gracefully. RAFCON supports sophisticated debugging functionality and tightly integrates error handling and recovery mechanisms. A GUI with a powerful state machine editor makes intuitive, visual programming and fast prototyping possible. We demonstrated the capabilities of our tool in the SpaceBotCamp national robotic competition, in which our mobile robot solved all exploration and assembly challenges fully autonomously. It is therefore also a promising tool for various RoboCup leagues.Comment: 8 pages, 5 figure

    Observation of simultaneous fast and slow light

    Full text link
    We present a microresonator-based system capable of simultaneously producing time-advanced and time-delayed pulses. The effect is based on the combination of a sharp spectral feature with two orthogonally-polarized propagating waveguide modes. We include an experimental proof-of-concept implementation using a silica microsphere coupled to a tapered optical fiber and use a time-domain picture to interpret the observed delays. We also discuss potential applications for future all-optical networks.Comment: 6 pages, 5 figure

    Thermalization via Heat Radiation of an Individual Object Thinner than the Thermal Wavelength

    Full text link
    Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and may lead to technical applications. Here, we study, over a large temperature range, the thermalization dynamics due to far-field heat radiation of an individual, deterministically produced silica fiber with a predetermined shape and a diameter smaller than the thermal wavelength. The temperature change of the subwavelength-diameter fiber is determined through a measurement of its optical path length in conjunction with an ab initio thermodynamic model of the fiber structure. Our results show excellent agreement with a theoretical model that considers heat radiation as a volumetric effect and takes the emitter shape and size relative to the emission wavelength into account

    Electromagnetic multipole theory for optical nanomaterials

    Get PDF
    Optical properties of natural or designed materials are determined by the electromagnetic multipole moments that light can excite in the constituent particles. In this work we present an approach to calculate the multipole excitations in arbitrary arrays of nanoscatterers in a dielectric host medium. We introduce a simple and illustrative multipole decomposition of the electric currents excited in the scatterers and link this decomposition to the classical multipole expansion of the scattered field. In particular, we find that completely different multipoles can produce identical scattered fields. The presented multipole theory can be used as a basis for the design and characterization of optical nanomaterials

    Divergence of Dipole Sums and the Nature of Non-Lorentzian Exponentially Narrow Resonances in One-Dimensional Periodic Arrays of Nanospheres

    Full text link
    Origin and properties of non-Lorentzian spectral lines in linear chains of nanospheres are discussed. The lines are shown to be super-exponentially narrow with the characteristic width proportional to exp[-C(h/a)^3] where C is a numerical constant, h the spacing between the nanospheres in the chain and a the sphere radius. The fine structure of these spectral lines is also investigated.Comment: 9 pages, 4 figure

    Bound whispering gallery modes in circular arrays of dielectric spherical particles

    Full text link
    Low-dimensional ordered arrays of optical elements can possess bound modes having an extremely high quality factor. Typically, these arrays consist of metal elements which have significantly high light absorption thus restricting performance. In this paper we address the following question: can bound modes be formed in dielectric systems where the absorption of light is negligible? Our investigation of circular arrays of spherical particles shows that (1) high quality modes in an array of 10 or more particles can be attained at least for a refractive index nr>2n_{r}>2, so optical materials like TiO2_{2} or GaAs can be used; (2) the most bound modes have nearly transverse polarization perpendicular to the circular plane; (3) in a particularly interesting case of TiO2_{2} particles (rutile phase, nr=2.7n_{r}=2.7), the quality factor of the most bound mode increases almost by an order of magnitude with the addition of 10 extra particles, while for particles made of GaAs the quality factor increases by almost two orders of magnitude with the addition of ten extra particles. We hope that this preliminary study will stimulate experimental investigations of bound modes in low-dimensional arrays of dielectric particles.Comment: Submitted to Physical Review

    Mie scattering by a charged dielectric particle

    Full text link
    We study for a dielectric particle the effect of surplus electrons on the anomalous scattering of light arising from the transverse optical phonon resonance in the particle's dielectric constant. Excess electrons affect the polarizability of the particle by their phonon-limited conductivity, either in a surface layer (for negative electron affinity) or the conduction band (for positive electron affinity). We demonstrate that surplus electrons shift an extinction resonance in the infrared. This offers an optical way to measure the charge of the particle and thus to use it in a plasma as a minimally invasive electric probe.Comment: 5 pages, 5 figures, accepted manuscrip

    Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    Full text link
    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. Firstly, aerosol photoemission studies can be performed for many different materials, including liquids. Secondly, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles

    Dynamical Theory of Artificial Optical Magnetism Produced by Rings of Plasmonic Nanoparticles

    Get PDF
    We present a detailed analytical theory for the plasmonic nanoring configuration first proposed in [A. Alu, A. Salandrino, N. Engheta, Opt. Expr. 14, 1557 (2006)], which is shown to provide negative magnetic permeability and negative index of refraction at infrared and optical frequencies. We show analytically how the nanoring configuration may provide superior performance when compared to some other solutions for optical negative index materials, offering a more 'pure' magnetic response at these high frequencies, which is necessary for lowering the effects of radiation losses and absorption. Sensitivity to losses and the bandwidth of operation of this magnetic inclusion are also investigated in details and compared with other available setups.Comment: 34 pages, 3 figure
    • …
    corecore