2,312 research outputs found
Near-field enhancement and sub-wavelength imaging in the optical region using a pair of two-dimensional arrays of metal nanospheres
Near-field enhancement and sub-wavelength imaging properties of a system
comprising a coupled pair of two-dimensional arrays of resonant nanospheres are
studied. The concept of using two coupled material sheets possessing surface
mode resonances for evanescent field enhancement is already well established in
the microwave region. This paper shows that the same principles can be applied
also in the optical region, where the performance of the resonant sheets can be
realized with the use of metallic nanoparticles. In this paper we present
design of such structures and study the electric field distributions in the
image plane of such superlens.Comment: 15 pages, 9 figure
The missing ingredient in effective-medium theories: Standard deviations
Effective-medium theories for electromagnetic constitutive parameters of
particulate composite materials are theories of averages. Standard deviations
are absent because of the lack of rigorous theories. But ensemble averages and
standard deviations can be calculated from a rigorous theory of reflection by
planar multilayers. Average reflectivities at all angles of incidence and two
orthogonal polarization states for a multilayer composed of two kinds of
electrically thin layers agree well with reflectivities for a single layer with
the same overall thickness and a volume-weighted average of the relative
permittivities of these two components. But the relative standard deviation can
be appreciable depending on the angle of incidence and the polarization state
of the incident illumination, and increases with increasing difference between
the constitutive parameters of the two layers. This suggests that average
constitutive parameters obtained from effective-medium theories do not have
uniform validity for all calculations in which they might be used.Comment: 12 pages (accepted for publication in Journal of Modern Optics
Millimeter Wave Scattering from Neutral and Charged Water Droplets
We investigated 94GHz millimeter wave (MMW) scattering from neutral and
charged water mist produced in the laboratory with an ultrasonic atomizer.
Diffusion charging of the mist was accomplished with a negative ion generator
(NIG). We observed increased forward and backscattering of MMW from charged
mist, as compared to MMW scattering from an uncharged mist. In order to
interpret the experimental results, we developed a model based on classical
electrodynamics theory of scattering from a dielectric sphere with
diffusion-deposited mobile surface charge. In this approach, scattering and
extinction cross-sections are calculated for a charged Rayleigh particle with
effective dielectric constant consisting of the volume dielectric function of
the neutral sphere and surface dielectric function due to the oscillation of
the surface charge in the presence of applied electric field. For small
droplets with (radius smaller than 100nm), this model predicts increased MMW
scattering from charged mist, which is qualitatively consistent with the
experimental observations. The objective of this work is to develop indirect
remote sensing of radioactive gases via their charging action on atmospheric
humid air.Comment: 18 pages, 8 figure
Off-resonance field enhancement by spherical nanoshells
We study light scattering by spherical nanoshells consistent of
metal/dielectric composites. We consider two geometries of metallic nanoshell
with dielectric core, and dielectric coated metallic nanoparticle. We
demonstrate that for both geometries the local field enhancement takes place
out of resonance regions ("dark states"), which, nevertheless, can be
understood in terms of the Fano resonance. At optimal conditions the light is
stronger enhanced inside the dielectric material. By using nonlinear dielectric
materials it will lead to a variety nonlinear phenomena applicable for
photonics applications
Divergence of Dipole Sums and the Nature of Non-Lorentzian Exponentially Narrow Resonances in One-Dimensional Periodic Arrays of Nanospheres
Origin and properties of non-Lorentzian spectral lines in linear chains of
nanospheres are discussed. The lines are shown to be super-exponentially narrow
with the characteristic width proportional to exp[-C(h/a)^3] where C is a
numerical constant, h the spacing between the nanospheres in the chain and a
the sphere radius. The fine structure of these spectral lines is also
investigated.Comment: 9 pages, 4 figure
Thermalization via Heat Radiation of an Individual Object Thinner than the Thermal Wavelength
Modeling and investigating the thermalization of microscopic objects with
arbitrary shape from first principles is of fundamental interest and may lead
to technical applications. Here, we study, over a large temperature range, the
thermalization dynamics due to far-field heat radiation of an individual,
deterministically produced silica fiber with a predetermined shape and a
diameter smaller than the thermal wavelength. The temperature change of the
subwavelength-diameter fiber is determined through a measurement of its optical
path length in conjunction with an ab initio thermodynamic model of the fiber
structure. Our results show excellent agreement with a theoretical model that
considers heat radiation as a volumetric effect and takes the emitter shape and
size relative to the emission wavelength into account
Circuit elements at optical frequencies: nano-inductors, nano-capacitors and nano-resistors
We present some ideas for synthesizing nanocircuit elements in the optical
domain using plasmonic and non-plasmonic nanoparticles. Three basic circuit
elements, i.e., nano-inductors, nano-capacitors, and nano-resistors, are
discussed in terms of small nanostructures with different material properties.
Coupled nanocircuits and parallel and series combinations are also envisioned,
which may provide road maps for the synthesis of more complex nanocircuits in
the IR and visible bands. Ideas for the optical implementation of right-handed
and left-handed nano-transmission lines are also forecasted.Comment: 14 pages, 5 figures, submitted to Physical Review Letter
Modeling of Isotropic Backward-Wave Materials Composed of Resonant Spheres
A possibility to realize isotropic artificial backward-wave materials is
theoretically analyzed. An improved mixing rule for the effective permittivity
of a composite material consisting of two sets of resonant dielectric spheres
in a homogeneous background is presented. The equations are validated using the
Mie theory and numerical simulations. The effect of a statistical distribution
of sphere sizes on the increasing of losses in the operating frequency band is
discussed and some examples are shown.Comment: 15 pages, 7 figure
Thermal Casimir Effect in the Plane-Sphere Geometry
The thermal Casimir force between two metallic plates is known to depend on
the description of material properties. For large separations the dissipative
Drude model leads to a force a factor of 2 smaller than the lossless plasma
model. Here we show that the plane-sphere geometry, in which current experiment
are performed, decreases this ratio to a factor of 3/2, as revealed by exact
numerical and large distance analytical calculations. For perfect reflectors,
we find a repulsive contribution of thermal photons to the force and negative
entropy values at intermediate distances.Comment: 4 pages, 3 figure
- …