828 research outputs found
Multifragmentation near the threshold
We investigate the onset of multifragmentation employing an improved version of the N-body ‘‘quantum’’ molecular-dynamics approach. We study in detail the reaction 18O+197Au at 84 MeV/nucleon and find good agreement between the calculated results and the data for the double-differential proton cross section, the mass yield, the multiplicity, the kinetic energy of the fragments, and even for the kinematic correlations between intermediate mass fragments (IMF’s), which have been measured in this experiment for the first time. We observe a strong correlation between the impact parameter and both the size of the target remnant as well as the average proton multiplicity. Hence both observables can be used to determine the impact parameter experimentally. The IMF’s come from the most central collisions. The calculations confirm the experimental result that they are not emitted from an equilibrated system. Although the inclusive energy spectra look thermal, we cannot identify an impact parameter-independent isotropically emitting source. Even in central collisions global equilibrium is not observed. We find that multifragment emission at this bombarding energy is caused by a process very similar to that proposed in the macroscopic cold multifragmentation model. Thus it has a different origin than at beam energies around 1 GeV/nucleon, although the mass yield has an almost identical slope
Relaxation oscillations, stability, and cavity feedback in a superradiant Raman laser
We experimentally study the relaxation oscillations and amplitude stability
properties of an optical laser operating deep into the bad-cavity regime using
a laser-cooled Rb Raman laser. By combining measurements of the laser
light field with nondemolition measurements of the atomic populations, we infer
the response of the gain medium represented by a collective atomic Bloch
vector. The results are qualitatively explained with a simple model.
Measurements and theory are extended to include the effect of intermediate
repumping states on the closed-loop stability of the oscillator and the role of
cavity feedback on stabilizing or enhancing relaxation oscillations. This
experimental study of the stability of an optical laser operating deep into the
bad-cavity regime will guide future development of superradiant lasers with
ultranarrow linewidths.Comment: 9 pages, 6 figure
Topoisomerase activity assays in Neurospora
DNA topoisomerases are enzymes capable of altering the topological conformation of DNA by inducing transient single (Topoisomerase I) and double strand (Topoisomerase II) breaks
General Formalism for Evaluating the Impact of Phase Noise on Bloch Vector Rotations
Quantum manipulation protocols for quantum sensors and quantum computation
often require many single qubit rotations. However, the impact of phase noise
in the field that performs the qubit rotations is often neglected or treated
only for special cases. We present a general framework for calculating the
impact of phase noise on the state of a qubit, as described by its equivalent
Bloch vector. The analysis applies to any Bloch vector orientation, and any
rotation axis azimuthal angle for both a single pulse, and pulse sequences.
Experimental examples are presented for several special cases. We apply the
analysis to commonly used composite -pulse sequences: CORPSE, SCROFULOUS,
and BB1, used to suppress static amplitude and detuning errors, and also to
spin echo sequences. We expect the formalism presented will help guide the
development and evaluation of future quantum manipulation protocols.Comment: 12 pages, 6 figures, submitted to PR
- …