823 research outputs found
On the cutting edge: Post-translational modifications in cytokinesis
Cytokinesis represents the final stage in the cell cycle, in which two daughter cells, each with their complement of the duplicated genome, physically separate. At the core of this process sits highly conserved machinery responsible for specifying the plane of division, building a contractile apparatus and ultimately cleaving cells in two. Although the \u27parts list\u27 of contributing proteins has been well described, mechanisms by which these parts are spatially and temporally regulated are only beginning to be understood. With advancements in biochemical and proteomic analyses, recent work has uncovered multiple new roles for post-translational modifications in the regulation of cytokinesis. Here, we review these latest findings and interpret our current understanding of cytokinesis in light of relevant modifications. © 2011 Elsevier Ltd
Branching Off: New Insight Into Lysosomes As Tubular Organelles
Lysosomes are acidic, membrane-bound organelles that play essential roles in cellular quality control, metabolism, and signaling. The lysosomes of a cell are commonly depicted as vesicular organelles. Yet, lysosomes in fact show a high degree of ultrastructural heterogeneity. In some biological contexts, lysosome membranes naturally transform into tubular, non-vesicular morphologies. Though the purpose and regulation of tubular lysosomes has been historically understudied, emerging evidence suggests that tubular lysosomes may carry out unique activities, both degradative and non-degradative, that are critical to cell behavior, function, and viability. Here, we discuss recent advances in understanding the biological significance of tubular lysosomes in cellular physiology, and we highlight a growing number of examples that indicate the centrality of this special class of lysosomes to health and disease
Impact of foot progression angle modification on plantar loading in individuals with diabetes mellitus and peripheral neuropathy
AIMS: To determine if participants can reduce foot progression angle (FPA), and if FPA reduction decreases regional plantar stresses and forces in individuals with diabetes. METHODS: DESIGN: Three-group cross-sectional design with repeated measures. SUBJECTS: twenty-eight participants either with diabetes mellitus (DM), diabetes and peripheral neuropathy with (DMPN+NPU) or without a prior history of ulceration (DMPN−NPU) were studied. INTERVENTION: Participants were first instructed to walk over a 3.6 m walkway at their preferred FPA, and then to walk with their foot aligned parallel with the line of gait progression at their self-selected speed. Dynamic plantar kinetics in six masked regions were collected using an EMED-st-P-2 pedobarograph. MAIN MEASURES: Primary outcome measures were FPA, peak plantar pressure (PPP), and force-time integral (FTI). A repeated measures ANOVA was conducted to determine group differences in FPA for both walking conditions. Regional differences in PPPs and FTIs between preferred and corrected walking conditions were analyzed using repeated measures ANCOVA. RESULTS: Participants showed a reduction in FPA magnitude on the ‘Involved’ foot between the preferred and corrected walking conditions (p<0.01). There were no differences in PPPs or FTIs in any mask between walking conditions (p>0.05). CONCLUSION: Results from this investigation offer important evidence that people with diabetes can modify their FPA with a simple intervention of visual and verbal cueing. Future research should examine if gait retraining strategies in regular footwear more effectively offload areas of elevated regional plantar stresses and forces in adults with diabetes mellitus and peripheral neuropathy
Cdk1-dependent phosphoinhibition of a formin-F-BAR interaction opposes cytokinetic contractile ring formation
© 2018 Willet et al. In Schizosaccharomyces pombe, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring (CR). A single essential formin, Cdc12, localizes to the cell middle upon mitotic onset and nucleates the F-actin of the CR. Cdc12 medial recruitment is mediated in part by its direct binding to the F-BAR scaffold Cdc15. Given that Cdc12 is hyperphosphorylated in M phase, we explored whether Cdc12 phosphoregulation impacts its association with Cdc15 during mitosis. We found that Cdk1, a major mitotic kinase, phosphorylates Cdc12 on six N-terminal residues near the Cdc15-binding site, and phosphorylation on these sites inhibits its interaction with the Cdc15 F-BAR domain. Consistent with this finding, a cdc12 mutant with all six Cdk1 sites changed to phosphomimetic residues (cdc12-6D) displays phenotypes similar to cdc12-P31A, in which the Cdc15-binding motif is disrupted; both show reduced Cdc12 at the CR and delayed CR formation. Together, these results indicate that Cdk1 phosphorylation of formin Cdc12 antagonizes its interaction with Cdc15 and thereby opposes Cdc12\u27s CR localization. These results are consistent with a general role of Cdk1 in inhibiting cytokinesis until chromosome segregation is complete
Determination of Real-Time Efflux Phenotypes in Escherichia coli AcrB Binding Pocket Phenylalanine Mutants Using a 1,2′-Dinaphthylamine Efflux Assay
To evaluate the importance of phenylalanine residues for substrate transport in the Escherichia coli efflux pump protein AcrB, we subjected Phe-to-Ala binding pocket mutants to a real-time efflux assay with the novel near-infrared lipophilic membrane probe 1,2′-dinaphthylamine (1,2′-DNA). All mutations, with the exception of F617A, led to considerable retardation of efflux. F610A was the point mutation with the most pronounced impact, followed by F628A, F615A, F136A, and F178A. This is the first study to demonstrate the importance of single phenylalanine residues within the AcrB binding pocket for real-time substrate transport
Crystalline Bi4Ge3O12 fibers fabricated by micro-pulling down technique for optical high voltage sensing
AbstractCommonly optical high voltage sensors employ the Pockels effect in a bulk electro-optic crystal such as Bi4Ge3O12 (BGO). Typically, the maximum crystal length is 100-200mm and determined by the limits of the conventional growth technique (Czochralski). In this paper we report on the growth by a micro-pulling down technique of long single crystalline BGO fibers as an alternative to bulk crystals and their characterization for voltage sensing. The fiber thickness may range from a few 100μm to a few mm. The parameters needed for stable growth over the entire length of the crystal were analyzed and optimized. Thin rods with a length of up to 850mm were grown. Samples were characterized with respect to homogeneity of growth, residual birefringence (BGO is free of natural birefringence), crystal orientation, and performance under voltage
Formin-based control of the actin cytoskeleton during cytokinesis
Cytokinesis, the terminal event in the canonical cell cycle, physically separates daughter cells following mitosis. For cleavage to occur in many eukaryotes, a cytokinetic ring must assemble and constrict between divided genomes. Although dozens of different molecules localize to and participate within the cytokinetic ring, the core machinery comprises linear actin filaments. Accordingly, formins, which nucleate and elongate F-actin (filamentous actin) for the cytokinetic ring, are required for cytokinesis in diverse species. In the present article, we discuss specific modes of formin-based actin regulation during cell division and highlight emerging mechanisms and questions on this topic. © 2013 Biochemical Society
Phosphoregulation of the cytokinetic protein Fic1 contributes to fission yeast growth polarity establishment
© 2020. Published by The Company of Biologists Ltd. Cellular polarization underlies many facets of cell behavior, including cell growth. The rod-shaped fission yeast Schizosaccharomyces pombe is a well-established, genetically tractable system for studying growth polarity regulation. S. pombe cells elongate at their two cell tips in a cell cycle-controlled manner, transitioning from monopolar to bipolar growth in interphase when new ends established by the most recent cell division begin to extend. We previously identified cytokinesis as a critical regulator of new end growth and demonstrated that Fic1, a cytokinetic factor, is required for normal polarized growth at new ends. Here, we report that Fic1 is phosphorylated on two C-terminal residues, which are each targeted by multiple protein kinases. Endogenously expressed Fic1 phosphomutants cannot support proper bipolar growth, and the resultant defects facilitate the switch into an invasive pseudohyphal state. Thus, phosphoregulation of Fic1 links the completion of cytokinesis to the re-establishment of polarized growth in the next cell cycle. These findings broaden the scope of signaling events that contribute to regulating S. pombe growth polarity, underscoring that cytokinetic factors constitute relevant targets of kinases affecting new end growth.This article has an associated First Person interview with Anthony M. Rossi, joint first author of the paper
- …