12 research outputs found

    Candida auris az Ăşj "szupergomba"

    Get PDF
    A gombák által kiváltott fertőzések száma évek óta növekvő tendenciát mutat világszerte. Ezen megbetegedésekért nagy arányban a Candida nemzetség képviselői a felelősek, azonban a nemzetségen belül a fertőzést okozó fajok arányában változások figyelhetők meg az elmúlt években. Az egyik feltörekvő Candida faj a Candida auris, mely alig több mint 10 éves múltra tekint vissza, mégis a gomba ellenes szerekkel szembeni kiemelkedő arányú rezisztenciája, illetve klinikai környezetben való terjedése miatt kiemelt figyelemre tett szert. Ezen tulajdonságai miatt az antifungális rezisztencia kialakulásának, illetve hatásának vizsgálata C. auris esetében kiemelten fontos feladat

    The effect of antifungal resistance development on the virulence of Candida species

    Get PDF
    In recent years, the relevance of diseases associated with fungal pathogens increased worldwide. Members of the Candida genus are responsible for the greatest number of fungal bloodstream infections every year. Epidemiological data consistently indicate a modest shift toward non-albicans species, albeit Candidaalbicans is still the most recognizable species within the genus. As a result, the number of clinically relevant pathogens has increased, and, despite their distinct pathogenicity features, the applicable antifungal agents remained the same. For bloodstream infections, only three classes of drugs are routinely used, namely polyenes, azoles and echinocandins. Antifungal resistance toward all three antifungal drug classes frequently occurs in clinical settings. Compared with the broad range of literature on virulence and antifungal resistance of Candida species separately, only a small portion of studies examined the effect of resistance on virulence. These studies found that resistance to polyenes and echinocandins concluded in significant decrease in the virulence in different Candida species. Meanwhile, in some cases, resistance to azole type antifungals resulted in increased virulence depending on the species and isolates. These findings underline the importance of studies aiming to dissect the connections of virulence and resistance in Candida species

    Characterization and functional analysis of zinc trafficking in the human fungal pathogen Candida parapsilosis

    Get PDF
    The zinc restriction and zinc toxicity are part of host defence, called nutritional immunity. The crucial role of zinc homeostasis in microbial survival within a host is established, but little is known about these processes in the opportunistic human fungal pathogen Candida parapsilosis. Our in silico predictions suggested the presence of at least six potential zinc transporters (ZnTs) in C. parapsilosis-orthologues of ZRC1, ZRT3 and ZRT101-but an orthologue of PRA1 zincophore was not found. In addition, we detected a species-specific gene expansion of the novel ZnT ZRT2, as we identified three orthologue genes in the genome of C. parapsilosis. Based on predictions, we created homozygous mutant strains of the potential ZnTs and characterized them. Despite the apparent gene expansion of ZRT2 in C. parapsilosis, only CpZRT21 was essential for growth in a zinc-depleted acidic environment, in addition we found that CpZrc1 is essential for zinc detoxification and also protects the fungi against the elimination of murine macrophages. Significantly, we demonstrated that C. parapsilosis forms zincosomes in a Zrc1-independent manner and zinc detoxification is mediated by the vacuolar importer CpZrc1. Our study defines the functions of C. parapsilosis ZnTs, including a species-specific survival and zinc detoxification system

    Acquired Triazole Resistance Alters Pathogenicity-Associated Features in Candida auris in an Isolate-Dependent Manner

    Get PDF
    Fluconazole resistance is commonly encountered in Candida auris, and the yeast frequently displays resistance to other standard drugs, which severely limits the number of effective therapeutic agents against this emerging pathogen. In this study, we aimed to investigate the effect of acquired azole resistance on the viability, stress response, and virulence of this species. Fluconazole-, posaconazole-, and voriconazole- resistant strains were generated from two susceptible C. auris clinical isolates (0381, 0387) and compared under various conditions. Several evolved strains became pan-azole-resistant, as well as echinocandin-cross-resistant. While being pan-azole-resistant, the 0381-derived posaconazole-evolved strain colonized brain tissue more efficiently than any other strain, suggesting that fitness cost is not necessarily a consequence of resistance development in C. auris. All 0387-derived evolved strains carried a loss of function mutation (R160S) in BCY1, an inhibitor of the PKA pathway. Sequencing data also revealed that posaconazole treatment can result in ERG3 mutation in C. auris. Despite using the same mechanisms to generate the evolved strains, both genotype and phenotype analysis highlighted that the development of resistance was unique for each strain. Our data suggest that C. auris triazole resistance development is a highly complex process, initiated by several pleiotropic factors

    Triazole Evolution of Candida parapsilosis Results in Cross-Resistance to Other Antifungal Drugs, Influences Stress Responses, and Alters Virulence in an Antifungal Drug-Dependent Manner

    Get PDF
    The number of invasive infections caused by Candida species is increasing worldwide. The incidence of candidiasis cases caused by non-albicans Candida species, such as Candida parapsilosis, is also increasing, and non-albicans Candida species are currently responsible for more invasive infections than C. albicans Additionally, while the development of azole resistance during invasive disease with C. albicans remains uncommon, azole-resistant C. parapsilosis strains are frequently isolated in the hospital setting. In this study, we applied direct selection to generate azole-adapted and azole-evolved C. parapsilosis strains in order to examine the effect of azole resistance development on fungal viability and pathogenesis progression. Depending on the drug applied, the different evolved strains developed distinct cross-resistance patterns: the fluconazole-evolved (FLUEVO) and voriconazole-evolved (VOREVO) strains gained resistance to fluconazole and voriconazole only, while posaconazole evolution resulted in cross-resistance to all azoles and the posaconazole-evolved (POSEVO) strains showed higher echinocandin MIC values than the FLUEVO and VOREVO strains. Whole-genome sequencing results identified the development of different resistance mechanisms in the evolved strains: the FLUEVO and VOREVO strains harbored amino acid substitutions in Mrr1p (A808T and N394Y, respectively), and the POSEVO strain harbored an amino acid change in Erg3p (D14Y). By revealing increased efflux pump activity in both the FLUEVO and the VOREVO strains, along with the altered sterol composition of the POSEVO strain, we now highlight the impact of the above-mentioned amino acid changes in C. parapsilosis azole resistance development. We further revealed that the virulence of this species was only slightly or partially affected by fluconazole and voriconazole adaptation, while it significantly decreased after posaconazole adaptation. Our results suggest that triazole adaptation can result in azole cross-resistance and that this process may also result in virulence alterations in C. parapsilosis, depending on the applied drug. Importance: Candida parapsilosis causes life-threatening fungal infections. In the last 2 decades, the increasing number of azole-resistant C. parapsilosis clinical isolates has been attributable to the overuse and misuse of fluconazole, the first-line antifungal agent most commonly used in several countries. To date, the range of applicable antifungal drugs is limited. As a consequence, it is essential to understand the possible mechanisms of antifungal resistance development and their effect on virulence in order to optimize antifungal treatment strategies in the clinical setting. Our results revealed that the prolonged exposure to azoles resulted not only in azole resistance but also in cross-resistance development. Our data further indicate that resistance development may occur through different mechanisms that can also alter the virulence of C. parapsilosis These results highlight the consequences of prolonged drug usage and suggest the need for developing alternative antifungal treatment strategies in clinical practice

    Triazole Evolution of Candida parapsilosis Results in Cross-Resistance to Other Antifungal Drugs, Influences Stress Responses, and Alters Virulence in an Antifungal Drug-Dependent Manner

    Get PDF
    The number of invasive infections caused by Candida species is increasing worldwide. The incidence of candidiasis cases caused by non-albicans Candida species, such as Candida parapsilosis, is also increasing, and non-albicans Candida species are currently responsible for more invasive infections than C. albicans. Additionally, while the development of azole resistance during invasive disease with C. albicans remains uncommon, azole-resistant C. parapsilosis strains are frequently isolated in the hospital setting. In this study, we applied direct selection to generate azole-adapted and azole-evolved C. parapsilosis strains in order to examine the effect of azole resistance development on fungal viability and pathogenesis progression. Depending on the drug applied, the different evolved strains developed distinct cross-resistance patterns: the fluconazole-evolved (FLUEVO) and voriconazole-evolved (VOREVO) strains gained resistance to fluconazole and voriconazole only, while posaconazole evolution resulted in cross-resistance to all azoles and the posaconazole-evolved (POSEVO) strains showed higher echinocandin MIC values than the FLUEVO and VOREVO strains. Whole-genome sequencing results identified the development of different resistance mechanisms in the evolved strains: the FLUEVO and VOREVO strains harbored amino acid substitutions in Mrr1p (A808T and N394Y, respectively), and the POSEVO strain harbored an amino acid change in Erg3p (D14Y). By revealing increased efflux pump activity in both the FLUEVO and the VOREVO strains, along with the altered sterol composition of the POSEVO strain, we now highlight the impact of the above-mentioned amino acid changes in C. parapsilosis azole resistance development. We further revealed that the virulence of this species was only slightly or partially affected by fluconazole and voriconazole adaptation, while it significantly decreased after posaconazole adaptation. Our results suggest that triazole adaptation can result in azole cross-resistance and that this process may also result in virulence alterations in C. parapsilosis, depending on the applied drug.László Bodai was supported by a János Bolyai research scholarship (scholarship BO/00522/19/8) of the Hungarian Academy of Sciences. Attila Gácser was supported by grants 20391 3/2018/FEKUSTRAT, NKFIH K 123952, and GINOP-2.3.2.-15-2016-00035. Attila Gácser was additionally funded by grant LP2018-15/2018. Toni Gabaldón was supported by grants from the Spanish Ministry of Science and Innovation (grant PGC2018-099921-B-I00), cofounded by the European Regional Development Fund (ERDF); from the CERCA Program/Generalitat de Catalunya; from the Catalan Research Agency (grants AGAUR and SGR423); from the European Union’s Horizon 2020 Research and Innovation Program (grant ERC-2016-724173); and from the Instituto Carlos III and Instituto Nacional de Bioinformática (grant PT17/0009/0023-ISCIII-SGEFI/ERDF).Peer Reviewed"Article signat per 12 autors/es: Csaba Papp, Flóra Bohner, Katica Kocsis, Mónika Varga, András Szekeres, László Bodai, Jesse R. Willis, Toni Gabaldón, Renáta Tóth, Joshua D. Nosanchuk, Csaba Vágvölgyi, and Attila Gácser"Postprint (published version

    Characterization and functional analysis of zinc trafficking in the human fungal pathogen Candida parapsilosis

    Get PDF
    The zinc restriction and zinc toxicity are part of host defence, called nutritional immunity. The crucial role of zinc homeostasis in microbial survival within a host is established, but little is known about these processes in the opportunistic human fungal pathogen Candida parapsilosis. Our in silico predictions suggested the presence of at least six potential zinc transporters (ZnTs) in C. parapsilosis-orthologues of ZRC1, ZRT3 and ZRT101-but an orthologue of PRA1 zincophore was not found. In addition, we detected a species-specific gene expansion of the novel ZnT ZRT2, as we identified three orthologue genes in the genome of C. parapsilosis. Based on predictions, we created homozygous mutant strains of the potential ZnTs and characterized them. Despite the apparent gene expansion of ZRT2 in C. parapsilosis, only CpZRT21 was essential for growth in a zinc-depleted acidic environment, in addition we found that CpZrc1 is essential for zinc detoxification and also protects the fungi against the elimination of murine macrophages. Significantly, we demonstrated that C. parapsilosis forms zincosomes in a Zrc1-independent manner and zinc detoxification is mediated by the vacuolar importer CpZrc1. Our study defines the functions of C. parapsilosis ZnTs, including a species-specific survival and zinc detoxification system
    corecore