72 research outputs found

    Schlaganfall-Bildgebung mittels Mehrschicht-Spiral-CT

    Get PDF
    Es wurde der Einsatz der Mehrschicht-Spiral-CT (MS-CT) zur zerebralen Perfusionsbildgebung und zur zerviko-zerebralen Angiographie bei Schlaganfallpatienten evaluiert. Bei 52 Patienten mit klinischen Zeichen einer akuten Ischämie wurde im Mittel 3,4 Stunden nach Symptombeginn an einem MS-CT Gerät eine CT-Perfusion (CTP) durchgeführt. Parameterbilder der zerebralen Blutperfusion (CBP), des zerebralen Blutvolumens (CBV) und der mittleren Transitzeit (MTT) wurden generiert, Perfusionsstörungen ermittelt und mit bildgebenden sowie klinischen Verlaufskontrollen korreliert. Eine CT-Angiographie (CTA) wurde initial bei 12 Patienten angewandt, um die Eignung des Untersuchungsprotokolls zu prüfen. Darüber hinaus wurden bei 45 Patienten mit Zeichen einer akuten zerebrovaskulären Insuffizienz die Ergebnisse der CTA mit denen anderer bildgebender Modalitäten (Magnetresonanz-Angiographie, digitale Subtraktionsangiographie, Dopplerultraschall) verglichen. Perfusionsbilder konnten von 44 Patienten generiert werden, hiervon entwickelten 22 Patienten einen im Verlauf gesicherten Infarkt. An Hand der MTT-Bilder konnten ischämische Veränderungen mit einer Sensitivität von 95 % erfasst werden, die Spezifität war mit 100 % für die CBV-Bilder am höchsten. Patienten mit Infarkt zeigten seitenvergleichend eine signifikante Reduktion der CBP in ischämischen Arealen. Die Ausdehnung der CBV Reduktion ergab die beste Korrelation mit dem endgültigen partiellen Infarktvolumen. Mit der CTA konnte anfänglich bei 12 / 12 Patienten, später bei 43 / 45 (96 %) eine umfassende Darstellung des zerviko-zerebralen Gefäßsystems erreicht werden, wobei in 22 Infarktpatienten die zu Grunde liegende Gefäßpathologie erkannt werden konnte. Das evaluierte Protokoll zur Perfusionsbildgebung mittels Mehrschicht-Spiral-CT ist zur frühzeitigen Erkennung und Quantifizierung einer akuten zerebralen Ischämie geeignet und bietet zusammen mit der CTA, welche das gesamte zerviko-zerebrale Gefäßsystem verlässlich visualisieren kann, die Möglichkeit einer umfassenden Bildgebung mittels MS-CT bei Schlaganfallpatienten.The application of multi-slice spiral computed tomography (MS-CT) in the diagnostic assessment of stroke patients using cerebral perfusion imaging and cervicocerebral angiography was evaluated. Fifty-two patients with clinically suspected acute ischemia underwent CT perfusion (CTP), performed 3.4 hours, on average, after the onset of symptoms, by using MS-CT. Perfusion images of the cerebral blood perfusion (CBP), cerebral blood volume (CBV) and mean transit time (MTT) were calculated. The amount and extension of perfusion disturbances were measured and correlated with the outcome. CT angiography (CTA) was initially performed on twelve patients to verify the suitability of the examination protocol. In addition, forty-five patients with signs of acute cerebrovascular insufficiency underwent CTA. CTA findings were compared with those of other imaging modalities (magnetic resonance imaging, digital subtraction angiography, doppler ultrasonography). Of 44 patients in whom perfusion maps could be generated, 22 developed infarction confirmed at follow-up. On MTT-maps ischemic changes could be detected with the highest sensitivity (95%). Specificity was highest (100%) for CBV-maps. Patients with infarction showed significant reduction of CBP in ischemic tissue compared to the contra lateral hemisphere. Extension of CBV reduction showed the best correlation with final infarct volume. Initially in twelve out of twelve patients, later in 43 out of 45 (96%), the cervicocranial vascular system could be comprehensively visualized using CTA. In 22 stroke patients the underlying vascular pathology could be detected. CT perfusion using multi-slice CT is a suitable tool for the early identification and quantification of acute cerebral ischemia. Multi-slice CT angiography permits reliable visualization of the cervicocranial vascular system. Together these tools offer comprehensive assessment of stroke patients by means of multi-slice CT

    Roadmap Guided Direct Percutaneous Vertebral Artery Puncture for Mechanical Thrombectomy of Acute Basilar Artery Occlusion: A Technical Case Report and Review of the Literature

    Get PDF
    Access techniques for mechanical thrombectomy normally include percutaneous puncture of the common femoral or, more recently, the radial artery. Although target vessel catheterization may frequently not be devoid of difficulties via both routes, the vast majority of mechanical thrombectomy (MT) cases can be successfully managed. However, in a significant minority of cases, a stable target vessel access cannot be reached resulting in futile recanalization procedures and detrimental outcomes for the patients. As such, in analogy to direct carotid puncture for anterior circulation MT, direct vertebral artery (VA) puncture (DVP) is a direct cervical approach, which can constitute the only feasible access to the posterior circulation in highly selected cases. So far, due to the rarity of DVP, only anecdotal evidence from isolated case reports is available and this approach raises concerns with regard to safety issues, feasibility, and technical realization. We present a case in which bail-out access to the posterior circulation was successfully obtained through a roadmap-guided lateral direct puncture of the V2 segment of the cervical VA and give an overview of technical nuances of published DVP approaches for posterior circulation MT

    A Case-Control Study

    Get PDF
    Purpose: To evaluate diffusion abnormalities of the retina and optic nerve in patients with central retinal artery occlusion (CRAO) using standard stroke diffusion-weighted magnetic resonance imaging (DWI). Methods: In this case-control study, DWI scans of patients with nonarteritic CRAO were retrospectively assessed for acute ischemia of the retina and optic nerve. Two neuroradiologists, blinded for patient diagnosis, randomly evaluated DWI of CRAO patients and controls (a collective of stroke and transient ischemic attack [TIA] patients) for restrictions of the retina and optic nerve. We calculated statistical quality criteria and analyzed inter-rater reliability using unweighted Kappa statistics. Results: 20 CRAO patients (60,6 ± 17 years) and 20 controls (60,7 ± 17 years) were included in the study. Sensitivity, specificity, positive and negative predictive values for retinal DWI restrictions were 75%/80%/79%/76% (reader 1) and 75%/100%/100%/80% (reader 2), respectively. Unweighted Kappa was κ = 0,70 (95% CI 0,48‑0,92), indicating "substantial" interrater reliability. In comparison, sensitivity, specificity, PPV and NPV (positive and negative predictive values) for restrictions of the optic nerve in CRAO were 55%/70%/65%/61% (reader 1) and 25%/100%/100%/57% (reader 2). Inter-rater reliability was "fair" with unweighted Kappa κ = 0,32 (95% CI 0,09‑0,56). Conclusions: Retinal diffusion restrictions were present in a majority of CRAO patients and detectable with reasonable sensitivity, high specificity and substantial inter-rater reliability. Further studies are necessary to study time dependency of retinal diffusion restrictions, improve image quality and investigate the reliability of retinal DWI to discern CRAO from other causes of acute loss of vision

    Spinal alignment shift between supine and prone CT imaging occurs frequently and regardless of the anatomic region, risk factors, or pathology

    Get PDF
    Computer-assisted spine surgery based on preoperative CT imaging may be hampered by sagittal alignment shifts due to an intraoperative switch from supine to prone. In the present study, we systematically analyzed the occurrence and pattern of sagittal spinal alignment shift between corresponding preoperative (supine) and intraoperative (prone) CT imaging in patients that underwent navigated posterior instrumentation between 2014 and 2017. Sagittal alignment across the levels of instrumentation was determined according to the C2 fracture gap (C2-F) and C2 translation (C2-T) in odontoid type 2 fractures, next to the modified Cobb angle (CA), plumbline (PL), and translation (T) in subaxial pathologies. One-hundred and twenty-one patients (C1/C2: n = 17; C3-S1: n = 104) with degenerative (39/121; 32%), oncologic (35/121; 29%), traumatic (34/121; 28%), or infectious (13/121; 11%) pathologies were identified. In the subaxial spine, significant shift occurred in 104/104 (100%) cases (CA: *p = .044; T: *p = .021) compared to only 10/17 (59%) cases that exhibited shift at the C1/C2 level (C2-F: **p = .002; C2-T: *p 5 segments (" increment PL > 5 segments": 4.5 +/- 1.8 mm; " increment PL <= 5 segments": 2 +/- 0.6 mm; *p = .013) or in revision surgery with pre-existing instrumentation (" increment PL presence": 5 +/- 2.6 mm; " increment PL absence": 2.4 +/- 0.7 mm; **p = .007). Interestingly, typical morphological instability risk factors did not influence the degree of shift. In conclusion, intraoperative spinal alignment shift due to a change in patient position should be considered as a cause for inaccuracy during computer-assisted spine surgery and when correcting spinal alignment according to parameters that were planned in other patient positions

    Retinal diffusion restrictions in acute branch retinal arteriolar occlusion

    Get PDF
    This study sought to investigate the occurrence of retinal diffusion restrictions (RDR) in branch retinal arteriolar occlusion (BRAO) using standard brain diffusion-weighted imaging (DWI). Two radiologists assessed DWI MRI scans of BRAO patients for RDR in a retrospective cohort study. Inter- and intrarater reliability were calculated using Kappa statistics. Detection rates of RDR were compared among MRI scans with varying field strength, sequence type and onset-to-DWI time intervals. 85 BRAO patients (63.1 +/- 16.5 years) and 89 DWI scans were evaluated. Overall sensitivity of RDR in BRAO was 46.1% with visually correlating low ADC signal in 56.1% of cases. Localization of RDR matched distribution of fundoscopic retinal edema in 85% of patients. Inter- and intra-rater agreement for RDR in BRAO was kappa(inter) = 0.64 (95% CI 0.48-0.80) and kappa(intra) = 0.87 (95% CI 0.76-0.96), respectively. RDR detection rate tended to be higher for 3T, when compared to 1.5T MRI scans (53.7% vs. 34.3%%; p = 0.07). RDR were identified within 24 h up to 2 weeks after onset of visual impairment. RDR in BRAO can be observed by means of standard stroke DWI in a substantial proportion of cases, although sensitivity and interrater reliability were lower than previously reported for complete central retinal artery occlusion

    Quantitative biparametric analysis of hybrid 18F-FET PET/MR-neuroimaging for differentiation between treatment response and recurrent glioma

    Get PDF
    We investigated the diagnostic potential of simultaneous 18F-FET PET/MR-imaging for differentiation between recurrent glioma and post-treatment related effects (PTRE) using quantitative volumetric (3D-VOI) lesion analysis. In this retrospective study, a total of 42 patients including 32 patients with histologically proven glioma relapse and 10 patients with PTRE (histopathologic follow-up, n = 4, serial imaging follow-up, n = 6) were evaluated regarding recurrence. PET/MR-imaging was semi-automatically analysed based on FET tracer uptake using conservative SUV thresholding (isocontour 80%) with emphasis on the metabolically most active regions. Mean (relative) apparent diffusion coefficient (ADCmean, rADCmean), standardised-uptake-value (SUV) including target-to-background (TBR) ratio were determined. Glioma relapse presented higher ADCmean (MD ± SE, 284 ± 91, p = 0.003) and TBRmax (MD ± SE, 1.10 ± 0.45, p = 0.02) values than treatment-related changes. Both ADCmean (AUC ± SE = 0.82 ± 0.07, p-value < 0.001) and TBRmax (AUC ± SE = 0.81 ± 0.08, p-value < 0.001) achieved reliable diagnostic performance in differentiating glioma recurrence from PTRE. Bivariate analysis based on a combination of ADCmean and TBRmax demonstrated highest diagnostic accuracy (AUC ± SE = 0.90 ± 0.05, p-value < 0.001), improving clinical (false negative and false positive) classification. In conclusion, biparametric analysis using DWI and FET PET, both providing distinct information regarding the underlying pathophysiology, presented best diagnostic accuracy and clinical benefit in differentiating recurrent glioma from treatment-related changes

    Direct puncture of the carotid artery as a bailout vascular access technique for mechanical thrombectomy in acute ischemic stroke—the revival of an old technique in a modern setting

    Get PDF
    Purpose: To describe our single-center experience of mechanical thrombectomy (MTE) via a direct carotid puncture (DCP) with regard to indication, time metrics, procedural details, as well as safety and efficacy aspects. Methods: DCP thrombectomy cases performed at our center were retrospectively identified from a prospectively maintained institutional MTE database. Various patient (age, sex, stroke cause, comorbidities), clinical (NIHSS, mRS), imaging (occlusion site, ASPECT score), procedural (indication for DCP, time from DCP to reperfusion, materials used, technical nuances), and outcome data (NIHSS, mRS) were tabulated. Results: Among 715 anterior circulation MTEs, 12 DCP-MTEs were identified and analyzed. Nine were left-sided M1 occlusions, one right-sided M1 occlusion, and two right-sided M2 occlusions. DCP was successfully carried out in 91.7%; TICI 2b/3-recanalization was achieved in 83.3% via direct lesional aspiration and/or stent-retrieval techniques. Median time from DCP to reperfusion was 23 min. Indications included futile transfemoral catheterization attempts of the cervical target vessels as well as iliac occlusive disease. Neck hematoma occurred in 2 patients, none of which required further therapy. Conclusion: MTE via DCP in these highly selected patients was reasonably safe, fast, and efficient. It thus represents a valuable technical extension of MTE, especially in patients with difficult access

    Tablets as an Option for Telemedicine—Evaluation of Diagnostic Performance and Efficiency in Intracranial Arterial Aneurysm Detection

    Get PDF
    Purpose: To evaluate a commercially available mobile device for the highly specialized task of detection of intracranial arterial aneurysm in telemedicine. Methods: Six radiologists with three different levels of experience retrospectively interpreted 60 computed tomography (CT) angiographies for the presence of intracranial arterial aneurysm, among them 30 cases with confirmed positive findings. Each radiologist reviewed the angiography datasets twice: once on a dedicated medical-grade workstation and on a commercially available mobile consumer-grade tablet with an interval of 3 months. Diagnostic performance, reading efficiency and subjective scorings including diagnostic confidence were analyzed and compared. Results: Diagnostic performance was comparable on both devices regardless of readers' experience, and no significant differences in sensitivity (66-87.5%) and specificity (79.4-87%) were found. Results obtained with tablets and medical workstations were also comparable in terms of subjective assessment across all reader groups. Conclusions: There was no significant difference between tablet and workstation readings of angiography datasets for the presence of intracranial arterial aneurysm. Sensitivity, specificity, efficiency and subjective scorings were similar with the two devices for all three reader groups. While medical workstations are 10 times more expensive, tablets allow higher mobility especially for radiologists on call

    Volumetric accuracy of different imaging modalities in acute intracerebral hemorrhage

    Get PDF
    Background: Follow-up imaging in intracerebral hemorrhage is not standardized and radiologists rely on different imaging modalities to determine hematoma growth. This study assesses the volumetric accuracy of different imaging modalities (MRI, CT angiography, postcontrast CT) to measure hematoma size. Methods: 28 patients with acute spontaneous intracerebral hemorrhage referred to a tertiary stroke center were retrospectively included between 2018 and 2019. Inclusion criteria were (1) spontaneous intracerebral hemorrhage (supra- or infratentorial), (2) noncontrast CT imaging performed on admission, (3) follow-up imaging (CT angiography, postcontrast CT, MRI), and (4) absence of hematoma expansion confirmed by a third cranial image within 6 days. Two independent raters manually measured hematoma volume by drawing a region of interest on axial slices of admission noncontrast CT scans as well as on follow-up imaging (CT angiography, postcontrast CT, MRI) using a semi-automated segmentation tool (Visage image viewer; version 7.1.10). Results were compared using Bland-Altman plots. Results: Mean admission hematoma volume was 18.79 +/- 19.86 cc. All interrater and intrarater intraclass correlation coefficients were excellent (1; IQR 0.98-1.00). In comparison to hematoma volume on admission noncontrast CT volumetric measurements were most accurate in patients who received postcontrast CT (bias of - 2.47%, SD 4.67: n = 10), while CT angiography often underestimated hemorrhage volumes (bias of 31.91%, SD 45.54; n = 20). In MRI sequences intracerebral hemorrhage volumes were overestimated in T2* (bias of - 64.37%, SD 21.65; n = 10). FLAIR (bias of 6.05%, SD 35.45; n = 13) and DWI (bias of-14.6%, SD 31.93; n = 12) over- and underestimated hemorrhagic volumes. Conclusions: Volumetric measurements were most accurate in postcontrast CT while CT angiography and MRI sequences often substantially over- or underestimated hemorrhage volumes
    • …
    corecore