827 research outputs found

    Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications

    Full text link
    Phase mixing of chaotic orbits exponentially distributes these orbits through their accessible phase space. This phenomenon, commonly called ``chaotic mixing'', stands in marked contrast to phase mixing of regular orbits which proceeds as a power law in time. It is operationally irreversible; hence, its associated e-folding time scale sets a condition on any process envisioned for emittance compensation. A key question is whether beams can support chaotic orbits, and if so, under what conditions? We numerically investigate the parameter space of three-dimensional thermal-equilibrium beams with space charge, confined by linear external focusing forces, to determine whether the associated potentials support chaotic orbits. We find that a large subset of the parameter space does support chaos and, in turn, chaotic mixing. Details and implications are enumerated.Comment: 39 pages, including 14 figure

    Loss of molecules in magneto-electrostatic traps due to nonadiabatic transitions

    Full text link
    We analyze the dynamics of a paramagnetic, dipolar molecule in a generic "magneto-electrostatic'' trap where both magnetic and electric fields may be present. The potential energy that governs the dynamics of the molecules is found using a reduced molecular model that incorporates the main features of the system. We discuss the shape of the trapping potentials for different field geometries, as well as the possibility of nonadiabatic transitions to untrapped states, i.e., the analog of Majorana transitions in a quadrupole magnetic atomic trap. Maximizing the lifetime of molecules in a trap is of great concern in current experiments, and we assess the effect of nonadiabatic transitions on obtainable trap lifetimes.Comment: 13 pages, 6 figure

    Softening and Broadening of the Zone Boundary Magnons in Pr0.63Sr0.37MnO3

    Full text link
    We have studied the spin dynamics in Pr0.63_{0.63}Sr0.37_{0.37}MnO3_3 above and below the Curie temperature TC=301T_C=301 K. Three distinct new features have been observed: a softening of the magnon dispersion at the zone boundary for T<TCT<T_C, significant broadening of the zone boundary magnons as T→TCT\to T_C, and no evidence for residual spin-wave like excitations just above TCT_C. The results are inconsistent with double exchange models that have been successfully applied to higher TCT_C samples, indicating an evolution of the spin system with decreasing TCT_C.Comment: 12 pages, Latex, 3 figure

    Kondo-lattice model: Application to the temperature-dependent electronic structure of EuO(100) films

    Full text link
    We present calculations for the temperature-dependent electronic structure and magnetic properties of thin ferromagnetic EuO films. The treatment is based on a combination of a multiband-Kondo lattice model with first-principles TB-LMTO band structure calculations. The method avoids the problem of double-counting of relevant interactions and takes into account the correct symmetry of the atomic orbitals. We discuss the temperature-dependent electronic structures of EuO(100) films in terms of quasiparticle densities of states and quasiparticle band structures. The Curie temperature T_C of the EuO films turns out to be strongly thickness-dependent, starting from a very low value = 15K for the monolayer and reaching the bulk value at about 25 layers

    Resonant control of elastic collisions in an optically trapped Fermi gas of atoms

    Full text link
    We have loaded an ultracold gas of fermionic atoms into a far off resonance optical dipole trap and precisely controlled the spin composition of the trapped gas. We have measured a magnetic-field Feshbach resonance between atoms in the two lowest energy spin-states, |9/2, -9/2> and |9/2, -7/2>. The resonance peaks at a magnetic field of 201.5 plus or minus 1.4 G and has a width of 8.0 plus or minus 1.1 G. Using this resonance we have changed the elastic collision cross section in the gas by nearly 3 orders of magnitude.Comment: 4 pages, 3 figure

    Observation of the superconducting proximity effect in Nb/InAs and NbNx/InAs by Raman scattering

    Get PDF
    URL:http://link.aps.org/doi/10.1103/PhysRevB.66.134530 DOI:10.1103/PhysRevB.66.134530High-quality thin Nb and NbN films (60-100 Å) are grown on (100) n+-InAs (n=1019cm-3) substrates by dc-magnetron sputter deposition. Studies of the electronic properties of interfaces between the superconductor and the semiconductor are done by Raman scattering measurements. The superconducting proximity effect at superconductor-semiconductor interfaces is observed through its impact on inelastic light scattering intensities originating from the near-interface region of InAs. The InAs longitudinal optical phonon LO mode (237cm-1) and the plasmon-phonon coupled modes L- (221cm-1) and L+ (1100 to 1350cm-1), for n+=1×1019-2×1019cm-3 are measured. The intensity ratio of the LO mode (associated with the near-surface charge accumulation region, in InAs) to that of the L- mode (associated with bulk InAs), is observed to increase by up to 40% below the superconducting transition temperature. This temperature-dependent change in light scattering properties is only observed with high quality superconducting films and when the superconductor and the semiconductor are in good electrical contact. A few possible mechanisms of the observed effect are proposed.We gratefully acknowledge support from the United States Department of Energy through Materials Research Laboratory~Grant No. DEFG02-96ER45439! ~I.V.R., A.C.A., L.H.G., T.A.T., J.F.D., P.W.B., J.F.K.!, and from the United States Department of Energy through Midwest Superconductivity Consortium ~MISCON! ~Grant No. DE FG02-90ER45427! and the NSF ~Grant No. DMR 96-23827! ~S.W.H., P.F.M.!. SEM, XRD, XPS, and RBS materials characterizations were performed at the Center for Microanalysis of Materials and Microfabrication Center at Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana- Champaign ~Grant No. DE FG02-96ER45439!. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000

    Manipulating the critical temperature for the superfluid phase transition in trapped atomic Fermi gases

    Full text link
    We examine the effect of the trapping potential on the critical temperature, TCT_C, for the BCS transition to a superfluid state in trapped atomic gases of fermions. TCT_C for an arbitrary power law trap is calculated in the Thomas-Fermi approximation. For anharmonic traps, TCT_C can be increased by several orders of magnitude in comparison to a harmonic trap. Our theoretical results indicate that, in practice, one could manipulate the critical temperature for the BCS phase transition by shaping the traps confining the atomic Fermi gases.Comment: 4 page

    Cooper Pairing in Ultracold K-40 Using Feshbach Resonances

    Full text link
    We point out that the fermionic isotope K-40 is a likely candidate for the formation of Cooper pairs in an ultracold atomic gas. Specifically, in an optical trap that simultaneously traps the spin states |9/2,-9/2> and |9/2,-7/2>, there exists a broad magnetic field Feshbach resonance at B = 196 gauss that can provide the required strong attractive interaction between atoms. An additional resonance, at B = 191 gauss, could generate p-wave pairing between identical |9/2,-7/2> atoms. A Cooper-paired degenerate Fermi gas could thus be constructed with existing ultracold atom technology.Comment: 4 pages, 2 figs, submitted to Phys. Rev.

    Quantum computation with trapped polar molecules

    Full text link
    We propose a novel physical realization of a quantum computer. The qubits are electric dipole moments of ultracold diatomic molecules, oriented along or against an external electric field. Individual molecules are held in a 1-D trap array, with an electric field gradient allowing spectroscopic addressing of each site. Bits are coupled via the electric dipole-dipole interaction. Using technologies similar to those already demonstrated, this design can plausibly lead to a quantum computer with ≳104\gtrsim 10^4 qubits, which can perform ∼105\sim 10^5 CNOT gates in the anticipated decoherence time of ∼5\sim 5 s.Comment: 4 pages, RevTeX 4, 2 figures. Edited for length and converted to RevTeX, but no substantial changes from earlier pdf versio

    Two-body correlations in N-body boson systems

    Full text link
    We formulate a method to study two-body correlations in a system of N identical bosons interacting via central two-body potentials. We use the adiabatic hyperspherical approach and assume a Faddeev-like decomposition of the wave function. For a fixed hyperradius we derive variationally an optimal integro-differential equation for hyperangular eigenvalue and wave function. This equation reduces substantially by assuming the interaction range much smaller than the size of the N-body system. At most one-dimensional integrals then remain. We view a Bose-Einstein condensate pictorially as a structure in the landscape of the potential given as a function of the one-dimensional hyperradial coordinate. The quantum states of the condensate can be located in one of the two potential minima. We derive and discuss properties of the solutions and illustrate with numerical results. The correlations lower the interaction energy substantially. The new multi-body Efimov states are solutions independent of details of the two-body potential. We compare with mean-field results and available experimental data.Comment: 19 pages (RevTeX4), 13 figures (latex). Journal-link: http://pra.aps.org
    • …
    corecore