1,848 research outputs found

    A Simple Quantum Model of Ultracold Polar Molecule Collisions

    Full text link
    We present a unified formalism for describing chemical reaction rates of trapped, ultracold molecules. This formalism reduces the scattering to its essential features, namely, a propagation of the reactant molecules through a gauntlet of long-range forces before they ultimately encounter one another, followed by a probability for the reaction to occur once they do. In this way, the electric-field dependence should be readily parametrized in terms of a pair of fitting parameters (along with a C6C_6 coefficient) for each asymptotic value of partial wave quantum numbers ∣L,M⟩|L,M \rangle. From this, the electric field dependence of the collision rates follows automatically. We present examples for reactive species such as KRb, and non-reactive species, such as RbCs

    Total angular momentum representation for atom-molecule collisions in electric fields

    Full text link
    It is shown that the atom-molecule collision problem in the presence of an external electric field can be solved using the total angular momentum representation in the body-fixed coordinated frame, leading to a computationally efficient method for ab initio modeling of low-temperature scattering phenomena. Our calculations demonstrate rapid convergence of the cross sections for vibrational and Stark relaxation in He-CaD collisions with the number of total angular momentum states in the basis set, leading to a 5-100 fold increase in computational efficiency over the previously used methods based on the fully uncoupled space-fixed representation. These results open up the possibility of carrying out numerically converged quantum scattering calculations on a wide array of atom-molecule collisions and chemical reactions in the presence of electric fields.Comment: 19 pages, 3 figures, 1 tabl

    Pair Wave Functions in Atomic Fermi Condensates

    Full text link
    Recent experiments have observed condensation behavior in a strongly interacting system of fermionic atoms. We interpret these observations in terms of a mean-field version of resonance superfluidity theory. We find that the objects condensed are not bosonic molecules composed of bound fermion pairs, but are rather spatially correlated Cooper pairs whose coherence length is comparable to the mean spacing between atoms. We propose experiments that will help to further probe these novel pairs

    Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications

    Full text link
    Phase mixing of chaotic orbits exponentially distributes these orbits through their accessible phase space. This phenomenon, commonly called ``chaotic mixing'', stands in marked contrast to phase mixing of regular orbits which proceeds as a power law in time. It is operationally irreversible; hence, its associated e-folding time scale sets a condition on any process envisioned for emittance compensation. A key question is whether beams can support chaotic orbits, and if so, under what conditions? We numerically investigate the parameter space of three-dimensional thermal-equilibrium beams with space charge, confined by linear external focusing forces, to determine whether the associated potentials support chaotic orbits. We find that a large subset of the parameter space does support chaos and, in turn, chaotic mixing. Details and implications are enumerated.Comment: 39 pages, including 14 figure

    Linking Ultracold Polar Molecules

    Get PDF
    We predict that pairs of polar molecules can be weakly bound together in an ultracold environment, provided that a dc electric field is present. The field that links the molecules together also strongly influences the basic properties of the resulting dimer, such as its binding energy and predissociation lifetime. Because of their long-range character these dimers will be useful in disentangling cold collision dynamics of polar molecules. As an example, we estimate the microwave photoassociation yield for OH-OH cold collisions.Comment: 4 pages 2 figure

    Fluctuations Do Matter: Large Noise-Enhanced Halos in Charged-Particle Beams

    Full text link
    The formation of beam halos has customarily been described in terms of a particle-core model in which the space-charge field of the oscillating core drives particles to large amplitudes. This model involves parametric resonance and predicts a hard upper bound to the orbital amplitude of the halo particles. We show that the presence of colored noise due to space-charge fluctuations and/or machine imperfections can eject particles to much larger amplitudes than would be inferred from parametric resonance alone.Comment: 13 pages total, including 5 figure
    • …
    corecore