3,397 research outputs found
A Technique for Measuring Rotocraft Dynamic Stability in the 40 by 80 Foot Wind Tunnel
An on-line technique is described for the measurement of tilt rotor aircraft dynamic stability in the Ames 40- by 80-Foot Wind Tunnel. The technique is based on advanced system identification methodology and uses the instrumental variables approach. It is particulary applicable to real time estimation problems with limited amounts of noise-contaminated data. Several simulations are used to evaluate the algorithm. Estimated natural frequencies and damping ratios are compared with simulation values. The algorithm is also applied to wind tunnel data in an off-line mode. The results are used to develop preliminary guidelines for effective use of the algorithm
Pseudo-potential treatment of two aligned dipoles under external harmonic confinement
Dipolar Bose and Fermi gases, which are currently being studied extensively
experimentally and theoretically, interact through anisotropic, long-range
potentials. Here, we replace the long-range potential by a zero-range
pseudo-potential that simplifies the theoretical treatment of two dipolar
particles in a harmonic trap. Our zero-range pseudo-potential description
reproduces the energy spectrum of two dipoles interacting through a
shape-dependent potential under external confinement very well, provided that
sufficiently many partial waves are included, and readily leads to a
classification scheme of the energy spectrum in terms of approximate angular
momentum quantum numbers. The results may be directly relevant to the physics
of dipolar gases loaded into optical lattices.Comment: 9 pages, 4 figure
The Liouville Theorem for a Quasi-Linear Elliptic Partial Differential Equation
The classical Liouville Theorem of analytic function theory can be stated in either of two equivalent forms: The Liouville Theorem states: If f(w) is analytic and bounded throughout the finite w-plane, then f(w) is constant. If z(x, y) is a real valued function of the real variables x and y which is a solution of zxx + zyy = 0 and is bounded either above or below throughout the finite plane, then z(x, y) is a constant. Here we are concerned with the question of whether or not the second formulation of the above theorem is valid for solutions of more general elliptic partial differential equations
The Liouville Theorem for a Quasi-Linear Elliptic Partial Differential Equation
The classical Liouville Theorem of analytic function theory can be stated in either of two equivalent forms: The Liouville Theorem states: If f(w) is analytic and bounded throughout the finite w-plane, then f(w) is constant. If z(x, y) is a real valued function of the real variables x and y which is a solution of zxx + zyy = 0 and is bounded either above or below throughout the finite plane, then z(x, y) is a constant. Here we are concerned with the question of whether or not the second formulation of the above theorem is valid for solutions of more general elliptic partial differential equations
Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change
The prediction of methane emissions from high-latitude wetlands is important given concerns about their sensitivity to a warming climate. As a basis for the prediction of wetland methane emissions at regional scales, we coupled the variable infiltration capacity macroscale hydrological model (VIC) with the biosphere–energy-transfer–hydrology terrestrial ecosystem model (BETHY) and a wetland methane emissions model to make large-scale estimates of methane emissions as a function of soil temperature, water table depth, and net primary productivity (NPP), with a parameterization of the sub-grid heterogeneity of the water table depth based on TOPMODEL. We simulated the methane emissions from a 100 km × 100 km region of western Siberia surrounding the Bakchar Bog, for a retrospective baseline period of 1980–1999 and have evaluated their sensitivity to increases in temperature of 0–5 °C and increases in precipitation of 0–15%. The interactions of temperature and precipitation, through their effects on the water table depth, played an important role in determining methane emissions from these wetlands. The balance between these effects varied spatially, and their net effect depended in part on sub-grid topographic heterogeneity. Higher temperatures alone increased methane production in saturated areas, but caused those saturated areas to shrink in extent, resulting in a net reduction in methane emissions. Higher precipitation alone raised water tables and expanded the saturated area, resulting in a net increase in methane emissions. Combining a temperature increase of 3 °C and an increase of 10% in precipitation to represent climate conditions that may pertain in western Siberia at the end of this century resulted in roughly a doubling in annual emissions
Linking Ultracold Polar Molecules
We predict that pairs of polar molecules can be weakly bound together in an
ultracold environment, provided that a dc electric field is present. The field
that links the molecules together also strongly influences the basic properties
of the resulting dimer, such as its binding energy and predissociation
lifetime. Because of their long-range character these dimers will be useful in
disentangling cold collision dynamics of polar molecules. As an example, we
estimate the microwave photoassociation yield for OH-OH cold collisions.Comment: 4 pages 2 figure
Parameter Optimisation of a Virtual Synchronous Machine in a Microgrid
Parameters of a virtual synchronous machine in a small microgrid are
optimised. The dynamical behaviour of the system is simulated after a
perturbation, where the system needs to return to its steady state. The cost
functional evaluates the system behaviour for different parameters. This
functional is minimised by Parallel Tempering. Two perturbation scenarios are
investigated and the resulting optimal parameters agree with analytical
predictions. Dependent on the focus of the optimisation different optima are
obtained for each perturbation scenario. During the transient the system leaves
the allowed voltage and frequency bands only for a short time if the
perturbation is within a certain range.Comment: 17 pages, 5 figure
- …