98 research outputs found
Stellar Envelope Convection calibrated by Radiation Hydrodynamics Simulations: Influence on Globular Clusters Isochrones
One of the largest sources of uncertainty in the computation of globular
cluster isochrones and hence in the age determination of globular clusters is
the lack of a rigorous description of convection. Therefore, we calibrated the
superadiabatic temperature gradient in the envelope of metal-poor low-mass
stars according to the results from a new grid of 2D hydrodynamical models,
which cover the Main Sequence and the lower Red Giant Branch of globular
cluster stars. In practice, we still use for computing the evolutionary stellar
models the traditional mixing length formalism, but we fix the mixing length
parameter in order to reproduce the run of the entropy of the deeper adiabatic
region of the stellar envelopes with effective temperature and gravity as
obtained from the hydro-models. The detailed behaviour of the calibrated mixing
length depends in a non-trivial way on the effective temperature, gravity and
metallicity of the star. Nevertheless, the resulting isochrones for the
relevant age range of galactic globular clusters have only small differences
with respect to isochrones computed adopting a constant solar calibrated value
of the mixing length. Accordingly, the age of globular clusters is reduced by
0.2 Gyr at most.Comment: 9 pages, 3 figures Accepted for publication in ApJ Letter
Measuring ^{12}C(&alpha,&gamma)^{16}O from White Dwarf Asteroseismology
During helium burning in the core of a red giant, the relative rates of the
3&alpha and ^{12}C(&alpha,&gamma)^{16}O reactions largely determine the final
ratio of carbon to oxygen in the resulting white dwarf star. The uncertainty in
the 3&alpha reaction at stellar energies due to the extrapolation from
high-energy laboratory measurements is relatively small, but this is not the
case for the ^{12}C(&alpha,&gamma)^{16}O reaction. Recent advances in the
analysis of asteroseismological data on pulsating white dwarf stars now make it
possible to obtain precise measurements of the central ratio of carbon to
oxygen, providing a more direct way to measure the ^{12}C(&alpha,&gamma)^{16}O
reaction rate at stellar energies. We assess the systematic uncertainties of
this approach and quantify small shifts in the measured central oxygen
abundance originating from the observations and from model settings that are
kept fixed during the optimization. Using new calculations of white dwarf
internal chemical profiles, we find a rate for the ^{12}C(&alpha,&gamma)^{16}O
reaction that is significantly higher than most published values. The accuracy
of this method may improve as we modify some of the details of our description
of white dwarf interiors that were not accessible through previous
model-fitting methods.Comment: 8 pages, 4 figures, 3 tables, uses emulateapj5.sty, Accepted for
publication in the Astrophysical Journa
Convection, Thermal Bifurcation, and the Colors of A stars
Broad-band ultraviolet photometry from the TD-1 satellite and low dispersion
spectra from the short wavelength camera of IUE have been used to investigate a
long-standing proposal of Bohm-Vitense that the normal main sequence A- and
early-F stars may divide into two different temperature sequences: (1) a high
temperature branch (and plateau) comprised of slowly rotating convective stars,
and (2) a low temperature branch populated by rapidly rotating radiative stars.
We find no evidence from either dataset to support such a claim, or to confirm
the existence of an "A-star gap" in the B-V color range 0.22 <= B-V <= 0.28 due
to the sudden onset of convection. We do observe, nonetheless, a large scatter
in the 1800--2000 A colors of the A-F stars, which amounts to ~0.65 mags at a
given B-V color index. The scatter is not caused by interstellar or
circumstellar reddening. A convincing case can also be made against binarity
and intrinsic variability due to pulsations of delta Sct origin. We find no
correlation with established chromospheric and coronal proxies of convection,
and thus no demonstrable link to the possible onset of convection among the A-F
stars. The scatter is not instrumental. Approximately 0.4 mags of the scatter
is shown to arise from individual differences in surface gravity as well as a
moderate spread (factor of ~3) in heavy metal abundance and UV line blanketing.
A dispersion of ~0.25 mags remains, which has no clear and obvious explanation.
The most likely cause, we believe, is a residual imprecision in our correction
for the spread in metal abundances. However, the existing data do not rule out
possible contributions from intrinsic stellar variability or from differential
UV line blanketing effects owing to a dispersion in microturbulent velocity.Comment: 40 pages, 14 figures, 1 table, AAS LaTex, to appear in The
Astrophysical Journa
Two-Dimensional Hydrodynamics of Pre-Core Collapse: Oxygen Shell Burning
By direct hydrodynamic simulation, using the Piecewise Parabolic Method (PPM)
code PROMETHEUS, we study the properties of a convective oxygen burning shell
in a SN 1987A progenitor star prior to collapse. The convection is too
heterogeneous and dynamic to be well approximated by one-dimensional
diffusion-like algorithms which have previously been used for this epoch.
Qualitatively new phenomena are seen.
The simulations are two-dimensional, with good resolution in radius and
angle, and use a large (90-degree) slice centered at the equator. The
microphysics and the initial model were carefully treated. Many of the
qualitative features of previous multi-dimensional simulations of convection
are seen, including large kinetic and acoustic energy fluxes, which are not
accounted for by mixing length theory. Small but significant amounts of
carbon-12 are mixed non-uniformly into the oxygen burning convection zone,
resulting in hot spots of nuclear energy production which are more than an
order of magnitude more energetic than the oxygen flame itself. Density
perturbations (up to 8%) occur at the `edges' of the convective zone and are
the result of gravity waves generated by interaction of penetrating flows into
the stable region. Perturbations of temperature and electron fraction at the
base of the convective zone are of sufficient magnitude to create angular
inhomogeneities in explosive nucleosynthesis products, and need to be included
in quantitative estimates of yields. Combined with the plume-like velocity
structure arising from convection, the perturbations will contribute to the
mixing of nickel-56 throughout supernovae envelopes. Runs of different
resolution, and angular extent, were performed to test the robustness of theseComment: For mpeg movies of these simulations, see
http://www.astrophysics.arizona.edu/movies.html Submitted to the
Astrophysical Journa
Variation in the frequency separations with activity and impact on stellar parameter determination
Frequency separations used to infer global properties of stars through
asteroseismology can change depending on the strength and at what epoch of the
stellar cycle the p-mode frequencies are measured. In the Sun these variations
have been seen, even though the Sun is a low-activity star. In this paper, we
discuss these variations and their impact on the determination of the stellar
parameters (radius, mass and age) for the Sun. Using the data from maximum and
minimum activity, we fitted an age for the Sun that differs on average by 0.2
Gyr: slightly older during minimum activity. The fitted radius is also lower by
about 0.5% for the solar effective temperature during minimum.Comment: to be published in JPCS to be published in JPC
A large stellar evolution database for population synthesis studies. II. Stellar models and isochrones for an alpha-enhanced metal distribution
[Abridged] We present a large, new set of stellar evolution models and
isochrones for an alpha-enhanced metal distribution typical of Galactic halo
and bulge stars; it represents a homogeneous extension of our stellar model
library for a distribution already presented in Pietrinferni et al.(2004). The
effect of the alpha-element enhancement has been properly taken into account in
the nuclear network, opacity, equation of state and, for the first time, the
bolometric corrections, and color transformations. This allows us to avoid the
inconsistent use - common to all alpha-enhanced model libraries currently
available - of scaled-solar bolometric corrections and color transformations
for alpha-enhanced models and isochrones. We show how bolometric corrections to
magnitudes obtained for the U,B portion of stellar spectra for T_{eff}<=6500K,
are significantly affected by the metal mixture, especially at the higher
metallicities. We also provide complete sets of evolutionary models for
low-mass, He-burning stellar structures covering the whole metallicity range,
to enable synthetic horizontal branch simulations. We compare our database with
several widely used stellar model libraries from different authors, as well as
with various observed color magnitude and color-color diagrams (Johnson-Cousins
BVI and near infrared magnitudes, Stromgren colors) of Galactic field stars and
globular clusters. We also test our isochrones comparing integrated optical
colors and Surface Brightness Fluctuation magnitudes with selected globular
cluster data. We find a general satisfactory agreement with the empirical
constraints.Comment: 46 pages, 20 figures, ApJ in press, the whole database presented in
this paper can be foud at http://www.te.astro.it/BASTI/index.ph
Observable form of pulses emitted from relativistic collapsing objects
In this work, we discuss observable characteristics of the radiation emitted
from a surface of a collapsing object. We study a simplified model in which a
radiation of massless particles has a sharp in time profile and it happens at
the surface at the same moment of comoving time. Since the radiating surface
has finite size the observed radiation will occur during some finite time. Its
redshift and bending angle are affected by the strong gravitational field. We
obtain a simple expression for the observed flux of the radiation as a function
of time. To find an explicit expression for the flux we develop an analytical
approximation for the bending angle and time delay for null rays emitted by a
collapsing surface. In the case of the bending angle this approximation is an
improved version of the earlier proposed Beloborodov-Leahy-approximation. For
rays emitted at the accuracy of the proposed improved approximations
for the bending angle and time delay is of order (or less) than 2-3%. By using
this approximation we obtain an approximate analytical expression for the
observed flux and study its properties.Comment: 13 pages, 10 figures;Typos in equations and refrences are corrected.
No change in the results and discussion
The intermediate-age globular cluster NGC 1783 in the Large Magellanic Cloud
We present Hubble Space Telescope ACS deep photometry of the intermediate-age
globular cluster NGC 1783 in the Large Magellanic Cloud. By using this
photometric dataset, we have determined the degree of ellipticity of the
cluster (=0.140.03) and the radial density profile. This profile
is well reproduced by a standard King model with an extended core (r_c=24.5'')
and a low concentration (c=1.16), indicating that the cluster has not
experienced the collapse of the core.
We also derived the cluster age, by using the Pisa Evolutionary Library (PEL)
isochrones, with three different amount of overshooting (namely,
=0.0, 0.10 and 0.25). From the comparison of the observed
Color-Magnitude Diagram (CMD) and Main Sequence (MS) Luminosity Function (LF)
with the theoretical isochrones and LFs, we find that only models with the
inclusion of some overshooting (=0.10-0.25) are able to reproduce
the observables. By using the magnitude difference between the mean level of the He-clump and the flat
region of the SGB, we derive an age =1.40.2 Gyr.Comment: Accepted to publication by A
On the Use of Blanketed Atmospheres as Boundary Conditions for Stellar Evolutionary Models
Stellar models have been computed for stars having [Fe/H] = 0.0 and -2.0 to
determine the effects of using boundary conditions derived from the latest
MARCS model atmospheres. The latter were fitted to the interior models at both
the photosphere and at tau = 100, and at least for the 0.8-1.0 solar mass stars
considered here, the resultant evolutionary tracks were found to be nearly
independent of the chosen fitting point. Particular care was taken to treat the
entire star as consistently as possible; i.e., both the interior and atmosphere
codes assumed the same abundances and the same treatment of convection. Tracks
were also computed using either the classical gray T(tau,T_eff) relation or
that derived by Krishna Swamy (1966) to derive the boundary pressure. The
latter predict warmer giant branches (by ~150 K) at solar abundances than those
based on gray or MARCS atmospheres, which happens to be in good agreement with
the inferred temperatures of giants in the open cluster M67 from the latest
(V-K)-T_eff relations. Most of the calculations assumed Z=0.0125 (Asplund et
al.), though a few models were computed for Z=0.0165 (Grevesse & Sauval) to
determine the dependence of the tracks on Z_\odot. Grids of "scaled solar,
differentially corrected" (SDC) atmospheres were also computed to try to
improve upon theoretical MARCS models. When they were used as boundary
conditions, the resultant tracks agreed very well with those based on a
standard scaled-solar (e.g., Krishna Swamy) T(tau,T_eff) relation,
independently of the assumed metal abundance. Fits of isochrones to the C-M
diagram of the [Fe/H] = -2 globular cluster M68 were examined, as was the
possibility that the mixing-length parameter varies with stellar parameters.Comment: 54 pages, including 20 figures and 3 tables; accepted (July 2007) for
publication in the Astrophysical Journa
The Angular Momentum Evolution of Very Low Mass Stars
We present theoretical models of the angular momentum evolution of very low
mass stars (0.1 - 0.5 M_sun) and solar analogues (0.6 - 1.1 M_sun). We
investigate the effect of rotation on the effective temperature and luminosity
of these stars. We find that the decrease in T_eff and L can be significant at
the higher end of our mass range, but becomes negligible below 0.4 M_sun.
Formulae for relating T_eff to mass and v_rot are presented.
We compare our models to rotational data from young open clusters of
different ages to infer the rotational history of low mass stars, and the
dependence of initial conditions and rotational evolution on mass. We find that
the qualitative conclusions for stars below 0.6 M_sun do not depend on the
assumptions about internal angular momentum transport, which makes these low
mass stars ideal candidates for the study of the angular momentum loss law and
distribution of initial conditions. We find that neither models with solid body
nor differential rotation can simultaneously reproduce the observed stellar
spin down in the 0.6 to 1.1 M_sun mass range and for stars between 0.1 and 0.6
M_sun. The most likely explanation is that the saturation threshold drops more
steeply at low masses than would be predicted with a simple Rossby scaling. In
young clusters there is a systematic increase in the mean rotation rate with
decreased temperature below 3500 K (0.4 M_sun). This suggests either
inefficient angular momentum loss or mass-dependent initial conditions for
stars near the fully convective boundary. (abridged)Comment: To appear in the May 10, 2000 Ap
- …
