7,765 research outputs found

    Relativistic Partial Wave Analysis Using the Velocity Basis of the Poincare Group

    Get PDF
    The velocity basis of the Poincare group is used in the direct product space of two irreducible unitary representations of the Poincare group. The velocity basis with total angular momentum j will be used for the definition of relativistic Gamow vectors.Comment: 14 pages; revte

    Resonances, Unstable Systems and Irreversibility: Matter Meets Mind

    Full text link
    The fundamental time-reversal invariance of dynamical systems can be broken in various ways. One way is based on the presence of resonances and their interactions giving rise to unstable dynamical systems, leading to well-defined time arrows. Associated with these time arrows are semigroups bearing time orientations. Usually, when time symmetry is broken, two time-oriented semigroups result, one directed toward the future and one directed toward the past. If time-reversed states and evolutions are excluded due to resonances, then the status of these states and their associated backwards-in-time oriented semigroups is open to question. One possible role for these latter states and semigroups is as an abstract representation of mental systems as opposed to material systems. The beginnings of this interpretation will be sketched.Comment: 9 pages. Presented at the CFIF Workshop on TimeAsymmetric Quantum Theory: The Theory of Resonances, 23-26 July 2003, Instituto Superior Tecnico, Lisbon, Portugal; and at the Quantum Structures Association Meeting, 7-22 July 2004, University of Denver. Accepted for publication in the Internation Journal of Theoretical Physic

    Irreversible Quantum Mechanics in the Neutral K-System

    Get PDF
    The neutral Kaon system is used to test the quantum theory of resonance scattering and decay phenomena. The two dimensional Lee-Oehme-Yang theory with complex Hamiltonian is obtained by truncating the complex basis vector expansion of the exact theory in Rigged Hilbert space. This can be done for K_1 and K_2 as well as for K_S and K_L, depending upon whether one chooses the (self-adjoint, semi-bounded) Hamiltonian as commuting or non-commuting with CP. As an unexpected curiosity one can show that the exact theory (without truncation) predicts long-time 2 pion decays of the neutral Kaon system even if the Hamiltonian conserves CP.Comment: 36 pages, 1 PostScript figure include

    Solving the measurement problem: de Broglie-Bohm loses out to Everett

    Get PDF
    The quantum theory of de Broglie and Bohm solves the measurement problem, but the hypothetical corpuscles play no role in the argument. The solution finds a more natural home in the Everett interpretation.Comment: 20 pages; submitted to special issue of Foundations of Physics, in honour of James T. Cushin

    Classical mechanics without determinism

    Full text link
    Classical statistical particle mechanics in the configuration space can be represented by a nonlinear Schrodinger equation. Even without assuming the existence of deterministic particle trajectories, the resulting quantum-like statistical interpretation is sufficient to predict all measurable results of classical mechanics. In the classical case, the wave function that satisfies a linear equation is positive, which is the main source of the fundamental difference between classical and quantum mechanics.Comment: 11 pages, revised, to appear in Found. Phys. Let

    Opposite Arrows of Time Can Reconcile Relativity and Nonlocality

    Full text link
    We present a quantum model for the motion of N point particles, implying nonlocal (i.e., superluminal) influences of external fields on the trajectories, that is nonetheless fully relativistic. In contrast to other models that have been proposed, this one involves no additional space-time structure as would be provided by a (possibly dynamical) foliation of space-time. This is achieved through the interplay of opposite microcausal and macrocausal (i.e., thermodynamic) arrows of time.Comment: 12 pages, 4 figures; v5: section headlines adde

    Typicality vs. probability in trajectory-based formulations of quantum mechanics

    Full text link
    Bohmian mechanics represents the universe as a set of paths with a probability measure defined on it. The way in which a mathematical model of this kind can explain the observed phenomena of the universe is examined in general. It is shown that the explanation does not make use of the full probability measure, but rather of a suitable set function deriving from it, which defines relative typicality between single-time cylinder sets. Such a set function can also be derived directly from the standard quantum formalism, without the need of an underlying probability measure. The key concept for this derivation is the {\it quantum typicality rule}, which can be considered as a generalization of the Born rule. The result is a new formulation of quantum mechanics, in which particles follow definite trajectories, but which is only based on the standard formalism of quantum mechanics.Comment: 24 pages, no figures. To appear in Foundation of Physic

    Entanglement and State Preparation

    Full text link
    When a subset of particles in an entangled state is measured, the state of the subset of unmeasured particles is determined by the outcome of the measurement. This first measurement may be thought of as a state preparation for the remaining particles. In this paper, we examine how the duration of the first measurement effects the state of the unmeasured subsystem. The state of the unmeasured subsytem will be a pure or mixed state depending on the nature of the measurement. In the case of quantum teleportation we show that there is an eigenvalue equation which must be satisfied for accurate teleportation. This equation provides a limitation to the states that can be accurately teleported.Comment: 24 pages, 3 figures, submitted to Phys. Rev.

    Quasienergy anholonomy and its application to adiabatic quantum state manipulation

    Full text link
    The parametric dependence of a quantum map under the influence of a rank-1 perturbation is investigated. While the Floquet operator of the map and its spectrum have a common period with respect to the perturbation strength λ\lambda, we show an example in which none of the quasienergies nor the eigenvectors obey the same period: After a periodic increment of λ\lambda, the quasienergy arrives at the nearest higher one, instead of the initial one, exhibiting an anholonomy, which governs another anholonomy of the eigenvectors. An application to quantum state manipulations is outlined.Comment: 10pages, 1figure. To be published in Phys. Rev. Lett

    Quantum Equilibrium and the Origin of Absolute Uncertainty

    Full text link
    The quantum formalism is a ``measurement'' formalism--a phenomenological formalism describing certain macroscopic regularities. We argue that it can be regarded, and best be understood, as arising from Bohmian mechanics, which is what emerges from Schr\"odinger's equation for a system of particles when we merely insist that ``particles'' means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. We find that a Bohmian universe, though deterministic, evolves in such a manner that an {\it appearance} of randomness emerges, precisely as described by the quantum formalism and given, for example, by ``\rho=|\psis|^2.'' A crucial ingredient in our analysis of the origin of this randomness is the notion of the effective wave function of a subsystem, a notion of interest in its own right and of relevance to any discussion of quantum theory. When the quantum formalism is regarded as arising in this way, the paradoxes and perplexities so often associated with (nonrelativistic) quantum theory simply evaporate.Comment: 75 pages. This paper was published a long time ago, but was never archived. We do so now because it is basic for our recent article quant-ph/0308038, which can in fact be regarded as an appendix of the earlier on
    • 

    corecore