7 research outputs found

    Geomorphology and the Effects of Sea Level Rise on Tidal Marshes in Casco Bay

    Get PDF
    The geomorphology of the Casco Bay shoreline has a profound effect on the size, characteristics and spatial distribution of tidal marshes in the region. Casco Bay’s steep shorelines and narrow, glacial cut coastal embayments provide relatively few opportunities for development of extensive salt marshes. On the basis of area and frequency, tidal marshes in the region are dominated by wetlands that form in glacier‐cut coastal valleys. A smaller but still significant fraction of the tidal marsh area along the Casco Bay shorelines exists in a narrow, discontinuous ribbon of green perched between tidal waters and adjacent hillsides. This unique geomorphic setting means that lessons learned from evaluations elsewhere of vulnerability of tidal marshes to sea level rise provide limited insight into implications of sea level rise (SLR) for Casco Bay’s wetlands

    Leveraging continuous glucose monitoring as a catalyst for behaviour change : a scoping review

    Get PDF
    The authors would like to thank the student interns for their support in screening articles for inclusion in the prior biological feedback scoping review, which laid the foundation for the present review.Peer reviewe

    Global change effects on plant communities are magnified by time and the number of global change factors imposed

    Get PDF
    Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously

    Global change effects on plant communities are magnified by time and the number of global change factors imposed

    No full text
    Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously

    A randomized, double-blind, placebo-controlled study of latrepirdine in patients with mild to moderate huntington disease: HORIZON investigators of the huntington study group and european huntington's disease network

    No full text
    corecore