7 research outputs found

    Artificial Intelligence-based Quantification of Pleural Plaque Volume and Association with Lung Function in Asbestos-exposed Patients

    Get PDF
    Purpose: Pleural plaques (PPs) are morphologic manifestations of long-term asbestos exposure. The relationship between PP and lung function is not well understood, whereas the time-consuming nature of PP delineation to obtain volume impedes research. To automate the laborious task of delineation, we aimed to develop automatic artificial intelligence (AI)-driven segmentation of PP. Moreover, we aimed to explore the relationship between pleural plaque volume (PPV) and pulmonary function tests.Materials and Methods: Radiologists manually delineated PPs retrospectively in computed tomography (CT) images of patients with occupational exposure to asbestos (May 2014 to November 2019). We trained an AI model with a no-new-UNet architecture. The Dice Similarity Coefficient quantified the overlap between AI and radiologists. The Spearman correlation coefficient (r) was used for the correlation between PPV and pulmonary function test metrics. When recorded, these were vital capacity (VC), forced vital capacity (FVC), and diffusing capacity for carbon monoxide (DLCO).Results: We trained the AI system on 422 CT scans in 5 folds, each time with a different fold (n = 84 to 85) as a test set. On these independent test sets combined, the correlation between the predicted volumes and the ground truth was r = 0.90, and the median overlap was 0.71 Dice Similarity Coefficient. We found weak to moderate correlations with PPV for VC (n = 80, r = -0.40) and FVC (n = 82, r = -0.38), but no correlation for DLCO (n = 84, r = -0.09). When the cohort was split on the median PPV, we observed statistically significantly lower VC (P = 0.001) and FVC (P = 0.04) values for the higher PPV patients, but not for DLCO (P = 0.19).Conclusion: We successfully developed an AI algorithm to automatically segment PP in CT images to enable fast volume extraction. Moreover, we have observed that PPV is associated with loss in VC and FVC.</p

    Current controversies in TNM for the radiological staging of rectal cancer and how to deal with them: results of a global online survey and multidisciplinary expert consensus

    Get PDF
    Objectives: To identify the main problem areas in the applicability of the current TNM staging system (8th ed.) for the radiological staging and reporting of rectal cancer and provide practice recommendations on how to handle them. Methods: A global case-based online survey was conducted including 41 image-based rectal cancer cases focusing on various items included in the TNM system. Cases reaching < 80% agreement among survey respondents were identified as problem areas and discussed among an international expert panel, including 5 radiologists, 6 colorectal surgeons, 4 radiation oncologists, and 3 pathologists. Results: Three hundred twenty-one respondents (from 32 countries) completed the survey. Sixteen problem areas were identified, related to cT staging in low-rectal cancers, definitions for cT4b and cM1a disease, definitions for mesorectal fascia (MRF) involvement, evaluation of lymph nodes versus tumor deposits, and staging of lateral lymph nodes. The expert panel recommended strategies on how to handle these, including advice on cT-stage categorization in case of involvement of different layers of the anal canal, specifications on which structures to include in the definition of cT4b disease, how to define MRF involvement by the primary tumor and other tumor-bearing structures, how to differentiate and report lymph nodes and tumor deposits on MRI, and how to anatomically localize and stage lateral lymph nodes. Conclusions: The recommendations derived from this global survey and expert panel discussion may serve as a practice guide and support tool for radiologists (and other clinicians) involved in the staging of rectal cancer and may contribute to improved consistency in radiological staging and reporting. Key Points: • Via a case-based online survey (incl. 321 respondents from 32 countries), we identified 16 problem areas related to the applicability of the TNM staging system for the radiological staging and reporting of rectal cancer. • A multidisciplinary panel of experts recommended strategies on how to handle these problem areas, including advice on cT-stage categorization in case of involvement of different layers of the anal canal, specifications on which structures to include in the definition of cT4b disease, how to define mesorectal fascia involvement by the primary tumor and other tumor-bearing structures, how to differentiate and report lymph nodes and tumor deposits on MRI, and how to anatomically localize and stage lateral lymph nodes. • These recommendations may serve as a practice guide and support tool for radiologists (and other clinicians) involved in the staging of rectal cancer and may contribute to improved consistency in radiological staging and reporting

    Pelvic CT in addition to MRI to differentiate between rectal and sigmoid cancer on imaging using the sigmoid take-off as a landmark

    No full text
    Background The sigmoid take-off (STO) is a recently established landmark to discern rectal from sigmoid cancer on imaging. STO-assessment can be challenging on magnetic resonance imaging (MRI) due to varying axial planes. Purpose To establish the benefit of using computed tomography (CT; with consistent axial planes), in addition to MRI, to anatomically classify rectal versus sigmoid cancer using the STO. Material and Methods A senior and junior radiologist retrospectively classified 40 patients with rectal/rectosigmoid cancers using the STO, first on MRI-only (sagittal and oblique-axial views) and then using a combination of MRI and axial CT. Tumors were classified as rectal/rectosigmoid/sigmoid (according to published STO definitions) and then dichotomized into rectal versus sigmoid. Diagnostic confidence was documented using a 5-point scale. Results Adding CT resulted in a change in anatomical tumor classification in 4/40 cases (10%) for the junior reader and in 6/40 cases (15%) for the senior reader. Diagnostic confidence increased significantly after adding CT for the junior reader (mean score 3.85 vs. 4.27; P &lt; 0.001); confidence of the senior reader was not affected (4.28 vs. 4.25; P = 0.80). Inter-observer agreement was similarly good for MRI only (kappa=0.77) and MRI + CT (kappa=0.76). Readers reached consensus on the classification of rectal versus sigmoid cancer in 78%-85% of cases. Conclusion Availability of a consistent axial imaging plane - in the case of this study provided by CT - in addition to a standard MRI protocol with sagittal and oblique-axial imaging views can be helpful to more confidently localize tumors using the STO as a landmark, especially for more junior readers

    Evolutions in rectal cancer MRI staging and risk stratification in The Netherlands

    No full text
    Purpose To analyze how the MRI reporting of rectal cancer has evolved (following guideline updates) in The Netherlands.Methods Retrospective analysis of 712 patients (2011-2018) from 8 teaching hospitals in The Netherlands with available original radiological staging reports that were re-evaluated by a dedicated MR expert using updated guideline criteria. Original reports were classified as "free-text," "semi-structured," or "template" and completeness of reporting was documented. Patients were categorized as low versus high risk, first based on the original reports (high risk = cT3-4, cN+, and/or cMRF+) and then based on the expert re-evaluations (high risk = cT3cd-4, cN+, MRF+, and/or EMVI+). Evolutions over time were studied by splitting the inclusion period in 3 equal time periods.Results A significant increase in template reporting was observed (from 1.6 to 17.6-29.6%; p < 0.001), along with a significant increase in the reporting of cT-substage, number of N+ and extramesorectal nodes, MRF invasion and tumor-MRF distance, EMVI, anal sphincter involvement, and tumor morphology and circumference. Expert re-evaluation changed the risk classification from high to low risk in 18.0% of cases and from low to high risk in 1.7% (total 19.7%). In the majority (17.9%) of these cases, the changed risk classification was likely (at least in part) related to use of updated guideline criteria, which mainly led to a reduction in high-risk cT-stage and nodal downstaging.Conclusion Updated concepts of risk stratification have increasingly been adopted, accompanied by an increase in template reporting and improved completeness of reporting. Use of updated guideline criteria resulted in considerable downstaging (of mainly high-risk cT-stage and nodal stage).[GRAPHICS]

    Sources of variation in multicenter rectal MRI data and their effect on radiomics feature reproducibility

    No full text
    Objectives To investigate sources of variation in a multicenter rectal cancer MRI dataset focusing on hardware and image acquisition, segmentation methodology, and radiomics feature extraction software. Methods T2W and DWI/ADC MRIs from 649 rectal cancer patients were retrospectively acquired in 9 centers. Fifty-two imaging features (14 first-order/6 shape/32 higher-order) were extracted from each scan using whole-volume (expert/non-expert) and single-slice segmentations using two different software packages (PyRadiomics/CapTk). Influence of hardware, acquisition, and patient-intrinsic factors (age/gender/cTN-stage) on ADC was assessed using linear regression. Feature reproducibility was assessed between segmentation methods and software packages using the intraclass correlation coefficient. Results Image features differed significantly (p < 0.001) between centers with more substantial variations in ADC compared to T2W-MRI. In total, 64.3% of the variation in mean ADC was explained by differences in hardware and acquisition, compared to 0.4% by patient-intrinsic factors. Feature reproducibility between expert and non-expert segmentations was good to excellent (median ICC 0.89-0.90). Reproducibility for single-slice versus whole-volume segmentations was substantially poorer (median ICC 0.40-0.58). Between software packages, reproducibility was good to excellent (median ICC 0.99) for most features (first-order/shape/GLCM/GLRLM) but poor for higher-order (GLSZM/NGTDM) features (median ICC 0.00-0.41). Conclusions Significant variations are present in multicenter MRI data, particularly related to differences in hardware and acquisition, which will likely negatively influence subsequent analysis if not corrected for. Segmentation variations had a minor impact when using whole volume segmentations. Between software packages, higher-order features were less reproducible and caution is warranted when implementing these in prediction models

    Current controversies in TNM for the radiological staging of rectal cancer and how to deal with them: results of a global online survey and multidisciplinary expert consensus

    Get PDF
    OBJECTIVES: To identify the main problem areas in the applicability of the current TNM staging system (8(th) ed.) for the radiological staging and reporting of rectal cancer and provide practice recommendations on how to handle them. METHODS: A global case-based online survey was conducted including 41 image-based rectal cancer cases focusing on various items included in the TNM system. Cases reaching < 80% agreement among survey respondents were identified as problem areas and discussed among an international expert panel, including 5 radiologists, 6 colorectal surgeons, 4 radiation oncologists, and 3 pathologists. RESULTS: Three hundred twenty-one respondents (from 32 countries) completed the survey. Sixteen problem areas were identified, related to cT staging in low-rectal cancers, definitions for cT4b and cM1a disease, definitions for mesorectal fascia (MRF) involvement, evaluation of lymph nodes versus tumor deposits, and staging of lateral lymph nodes. The expert panel recommended strategies on how to handle these, including advice on cT-stage categorization in case of involvement of different layers of the anal canal, specifications on which structures to include in the definition of cT4b disease, how to define MRF involvement by the primary tumor and other tumor-bearing structures, how to differentiate and report lymph nodes and tumor deposits on MRI, and how to anatomically localize and stage lateral lymph nodes. CONCLUSIONS: The recommendations derived from this global survey and expert panel discussion may serve as a practice guide and support tool for radiologists (and other clinicians) involved in the staging of rectal cancer and may contribute to improved consistency in radiological staging and reporting. KEY POINTS: • Via a case-based online survey (incl. 321 respondents from 32 countries), we identified 16 problem areas related to the applicability of the TNM staging system for the radiological staging and reporting of rectal cancer. • A multidisciplinary panel of experts recommended strategies on how to handle these problem areas, including advice on cT-stage categorization in case of involvement of different layers of the anal canal, specifications on which structures to include in the definition of cT4b disease, how to define mesorectal fascia involvement by the primary tumor and other tumor-bearing structures, how to differentiate and report lymph nodes and tumor deposits on MRI, and how to anatomically localize and stage lateral lymph nodes. • These recommendations may serve as a practice guide and support tool for radiologists (and other clinicians) involved in the staging of rectal cancer and may contribute to improved consistency in radiological staging and reporting
    corecore